University of Nevada, Las Vegas Computer Science 456/656 Fall 2024 Assignment 3:

This assignment will not be graded. Answers will be posted on Tuesday September 23, 2024.

 \mathcal{P} means \mathcal{P} -time.

- 1. True/False. If the answer is not known to science at this time, enter "O" for Open.
 - (i) \ldots co- $\mathcal{P} = \mathcal{P}$.
 - (ii) \ldots co- $\mathcal{NP} = \mathcal{NP}$.
 - (iii) \ldots co- \mathcal{P} -space = \mathcal{P} -space.
 - (iv) _____ Block placement problems are \mathcal{NP} .
 - (v) _____ Sliding block problems are \mathcal{P} -SPACE.
 - (vi) $\square \mathcal{P} \neg \text{SPACE} = \mathcal{NP}$
 - (vii) $_$ Regular expression equivalence is \mathcal{P} .
 - (viii) _____ Regular expression equivalence is decidable.
 - (ix) _____ Context-free grammar equivalence is decidable.
 - (x) _____ Every regular language is context-free.
 - (xi) _____ The language C++ is context-free.
 - (xii) _____ The intersection of any two context-free languages is context-free.
 - (xiii) _____ The complement of any context-free language is context-free.
 - (xiv) _____ Every language is countable.
 - (xv) $_$ For any real number x, there is a program that prints the decimal expansion of x.
 - (xvi) $_$ For any real number x, there is a machine that decides whether a fraction is less than x.
 - (xvii) _____ There are only countably many decidable binary languages.
- (xviii) _____ Given a regular grammar G with n variables, there exists an NFA with n variables that accepts L(G).
- (xix) \ldots { $a^i b^j c^k : i = k$ } is a context-free language.
- (xx) $_$ Given an integer *n* written in binary notation, it is possible to find the prime factors of *n* in polynomial time.
- (xxi) $_$ Given an integer n written in binary notation, it is possible to decide whether n is prime in polynomial time.
- (xxii) _____ Any language generated by a grammar is decidable.
- (xxiii) _____ The complement of any decidable language is decidable.
- (xxiv) _____ The union of any two decidable languages is decidable.
- (xxv) _____ The complement of any undecidable language is undecidable.
- (xxvi) _____ The union of any two undecidable languages is undecidable.
- (xxvii) _____ Every context-free language is accepted by some DPDA.

2. Let L be the language generated by the following CNF (Chomsky Normal Form) grammar.

$$\begin{split} S &\to AS \,|\, CD \,|\, e \\ C &\to AS \\ D &\to BS \\ A &\to a \\ B &\to b \\ \text{Use the CYK algorithm to} \\ \text{determine whether } aaebae \in L. \end{split}$$

- 3. Give a context-free grammar for $L = \{w \in \{a, b\}^* : \#_a(w) > \#_b(w)\}$, that is, strings which have more a's than b's.
- 4. Write a regular grammar which generates the language accepted by the NFA illustrated below.

- 5. List the grammar classes and language classes of the Chomsky hierarchy.
- 6. Give two context-free languages whose intersection is not context-free.
- 7. Write a grammar for the Dyck language (using 'a' and 'b' instead of parentheses) and give a derivation of the string abaabb.

8. Draw a PDA which accepts the Dyck language, using a and b instead of left and right parentheses, respectively.

- 9. In the following, do not write more than necessary. Your answers should be concise and correct.
 - (a) Explain the verification definition of the class \mathcal{NP} .

(b) What could be a certificate to prove that a given Boolean expression is in the language SAT?