University of Nevada, Las Vegas Computer Science 456/656 Fall 2024 Assignment 4: Due October 13, 2024, 11:59 PM

Thu Oct 10 09:26:39 AM PDT 2024

Name:_____

You are permitted to work in groups, get help from others, read books, and use the internet. You will receive a message from the graduate assistant, Sabrina Wallace, telling you how to turn in the assignment.

 ${\cal P}$ means ${\cal P}\textsc{-time}.$

- 1. True/False. If the answer is not known to science at this time, enter "O" for Open.
 - (i) \ldots co- $\mathcal{P} = \mathcal{P}$.
 - (ii) \ldots co- $\mathcal{NP} = \mathcal{NP}$.
 - (iii) \ldots co- \mathcal{P} -space = \mathcal{P} -space.
 - (iv) _____ Block placement problems are \mathcal{NP} .
 - (v) _____ Sliding block problems are \mathcal{P} -SPACE.
 - (vi) $\ldots \mathcal{P}$ -Space = \mathcal{NP}
 - (vii) $_$ Regular expression equivalence is \mathcal{P} .
 - (viii) _____ Regular expression equivalence is decidable.
 - (ix) _____ Context-free grammar equivalence is decidable.
 - (x) _____ Every regular language is context-free.
 - (xi) _____ The language C++ is context-free.
 - (xii) _____ The intersection of any two context-free languages is context-free.
 - (xiii) _____ The complement of any context-free language is context-free.
 - (xiv) _____ Every language is countable.
 - (xv) _____ For any real number x, there is a program that prints the decimal expansion of x.
 - (xvi) $_$ For any real number x, there is a machine that decides whether a fraction is less than x.
 - (xvii) _____ There are only countably many decidable binary languages.
- (xviii) _____ Given a regular grammar G with n variables, there exists an NFA with n variables that accepts L(G).
- (xix) _____ $\{a^i b^j c^k : i \neq j \text{ or } j \neq k\}$ is a context-free language.
- (xx) _____ Given an integer n written in binary notation, it is possible to find the prime factors of n in polynomial time.
- (xxi) \dots Given an integer *n* written in binary notation, it is possible to decide whether *n* is prime in polynomial time.
- (xxii) _____ Any language generated by a grammar is decidable.
- (xxiii) _____ The complement of any decidable language is decidable.

- (xxiv) _____ The union of any two decidable languages is decidable.
- (xxv) _____ The complement of any undecidable language is undecidable.
- (xxvi) _____ The union of any two undecidable languages is undecidable.
- (xxvii) _____ Every context-free language is accepted by some DPDA.
- (xxviii) \dots If some machine writes an increasing sequence of fractions which converges to x, then x must be a recursive real number.
- 2. State the pumping lemma for regular languages. If your answer contains all the right words, but not in the right order, you might get no credit.

3. Draw a PDA which accepts the language $L = \{a^i b^j c^k : i = j \text{ or } j = k\}$

- 4. List the names (not the definitions) of three \mathcal{NP} -complete problems (languages) that we have **not** discussed in class.
- 5. Given languages L_1 and L_2 , exactly one of the following statements is correct. Which one?
 - (i) If there is an easy reduction from L_1 to L_2 and L_1 is hard, then L_2 must be hard.
 - (ii) If there is an easy reduction from L_1 to L_2 and L_2 is hard, then L_1 must be hard.

- (iii) If there is an easy reduction from L_1 to L_2 and L_1 is easy, then L_2 must be easy.
- (iv) If there is a hard reduction from L_1 to L_2 and L_2 is easy, then L_1 must be easy.
- 6. Explain the verification definition of the class \mathcal{NP} . Do not write more than necessary. Your answer should be concise and correct.

7. Prove that, for any positive integer n, the sum of the first n cubes, $1^3 + 2^3 + 3^3 + \cdots + n^3$, is $\frac{n^2(n+1)^2}{4}$

8. Prove that $\sqrt{3}$ is irrational.

9. Prove that $\log_2 3$ is irrational. (Hint: What is the definition of logarithm?)

10. However, $\log_2 3$ is very close to the rational number 19/12, only about 1% off. Explain why this fact is important for Western music.¹

 $^{^{1}}$ From the internet: "Western music may be defined as organized instrumentation and sound created and produced in Europe, the United States, and other societies established and shaped by European immigrants. This includes a wide assortment of musical genres, from classical music and jazz to rock and roll and country-western music."