University of Nevada, Las Vegas Computer Science 456/656 Fall 2024 Answers to Assignment 1: Due Friday September 6, 2024 1. Let M_1 be the DFA shown below. Let M_2 be the DFA shown below. Let M_3 be the DFA shown below. Which of the following languages is accepted by M_1 ? By M_2 ? By M_3 ? - (a) The language of all binary strings in which every substring 00 is followed by 1 is accepted by M_2 . - (b) The language of all strings over $\{a, b\}$ which end in b and which do not contain the substring bb is accepted by M_1 . - (c) The language of all binary numerals for positive integers equivalent to 2 modulo 3 is accepted by M_3 . - (d) The language of all strings over $\{a, b\}$ in which every b is followed by a is not accepted by any of the machines shown. - 2. Construct a DFA which accepts the language $\{b^iab^j: i, j \geq 0\}$, the language of all strings over $\{a, b\}$ which contain exactly one a. Your figure need not show the dead state. - 3. Recall that \emptyset is the empty language. If L is some language, what is the concatenation $\emptyset L$? Ans: \emptyset - 4. Let $L_1 = \{\lambda\}$. the language consisting of only the empty string. If L_2 is some other language, what is the concatenation L_1L_2 ? Ans: L_2 - 5. Is concatenation of languages commutative? That is, is the equation $L_1L_2 = L_2L_1$ always true? Ans: No. - 6. Is it true that, for any language, $L^nL = L^{n+1}$? Ans: Yes. - 7. Which of the following is true: - (a) If L is any language, $L^0 = L$. - (b) If L is any language, $L^0 = \emptyset$. - (c) If L is any language, $L^0 = \{\lambda\}$. Hint: Think! Ans: False, False, True. - 8. Does concatenation of languages distribute over union? That is, is $L_1(L_2 + L_3) = L_1L_2 + L_1L_3$ always true? Ans: Yes. - 9. What is \emptyset^* , the Kleene closure of the empty language? Ans: $\{\lambda\}$. - 10. What is L^{**} ? Ans: L^{*} . Kleene closure is idempotent. - 11. True(T) or False(F). - i **F** Concatenation is commutative. That is, $L_1L_2 = L_2L_1$ for any languages L_1 and L_2 . - ii T Concatenation is associative. That is, $(L_1L_2)L_3 = L_1(L_2L_3)$ for any languages L_1 , L_2 , and L_3 . - iii T The intersection of any two regular languages is regular. - iv T The complement of any regular languages is regular. - v T The Kleene closure of any regular languages is regular. - 12. The DFA M_1 shown in Problem 1 is not minimal, that is, it's equivalent to a DFA with fewer states. Can you draw a state diagram of that DFA? Your figure need not show the dead state.