University of Nevada, Las Vegas Computer Science 456/656 Fall 2024 Answers to Assignment 2: Due Friday September 13, 2024

Name:		
1 (dillo	 	

You are permitted to work in groups, get help from others, read books, and use the internet. You will receive a message from the graduate assistant, Zachary Edwards, telling you how to turn in the assignment.

- 1. Identify which machine accepts the language defined by each regular expression.
 - (i) $a^* + b^* M_7$

(v) $a(aa + b)^* M_8$

(ii) λM_2

(vi) $a^*b^* M_6$

(iii) $a^* M_3$

(vii) $(a+b)^* M_4$

(iv) \emptyset M_1

(viii) $(ab)^* M_5$

- 2. True or False.
 - (i) **T** If L is any language, L + L = L
 - (ii) **T** If L is any language, $L \cap L = L$
 - (iii) **F** If L is any language, $\{\lambda\} \in L^*$. Actually, $\lambda \in L^*$.
- 4. True or False. These are harder.
 - (a) **T** Any language consisting of all decimal numerals of an arithmetic sequence (for example: $L = \{\langle 5+8n \rangle : n \geq 0\} = \{5,13,21,29,37,45\ldots\}$) is regular. Note: the members of L are numerals, not numbers.

- (b) **T** Let L_1 be a regular binary language. Let L_2 be the language of all strings obtained from members of L_1 by substituting ab for 0 and c for 1. Then L' must be regular. For example, if $L_1 = \{0, 10, 10011\}$ then $L' = \{ab, cab, cababcc\}$.
- 5. Any NFA with n states is equivalent to some DFA with at most 2^n states, counting the dead state. Draw a minimal DFA equivalent to the following three state NFA.

Show your work. Add extra pages if needed.

	a	b
0	01	Ø
1	2	1
2	Ø	1
01	012	1
012	012	1

	0	1	2	01	012
0	0	X	X	X	О
1	X	0	X	X	X
2	X	X	O	X	X
01	X	X	X	0	O
012	X	X	X	О	О

- 6. The following True/False questions are much harder. I have not given the answers in class, and you may have to really hunt to find them on the internet.
 - (i) **T** DFA equivalence is \mathcal{P} -TIME.
 - (ii) **O** NFA equivalence is \mathcal{P} -TIME.
 - (iii) O NFA equivalence is \mathcal{NP} -TIME.
 - (iv) **O** Regular expression equivalence is \mathcal{NP} -TIME.
 - (v) T Regular expression equivalence is \mathcal{P} -SPACE.