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Name:

You are permitted to work in groups, get help from others, read books, and use the internet.

1. Give a P–time reduction of the Subset Sum problem to Partition.

An instance of SS, the Subset Sum problem is a sequence of n positive numbers σ = x1, x2, . . . xn

followed by a single positive number K. The solution to that instance is true if the terms of some

subsequence of σ add up to K.

An instance of the Partition problem is a sequence of m positive numbers τ = y1, y2, . . . ym. The

solution to that instance is true if there is some subsequence of τ whose sum is half the sum of τ .

We define a reduction from the Subset Sum problem to Partition.

Let (x1, x2, . . . xn,K) be an instance of SS. Define S =
∑n

i=1
xi. Without loss of generality, S ≥ K,

since otherwise (trivially) there is no solution to that instance. Our method is to define two additional

numbers, and we reduce to an instance which contains all of σ, together with those two numbers.

The obvious choice is to let the two extra numbers be K and S −K. The sum of τ is then 2S, and

we can see that if σ has a subsequence whose total is K, the subsequence of τ consisting of that

subsequence together with S −K will sum to exactly half the sum of τ .

But this solution, although nice, fails, because we could pick the subsequence of τ to be σ, whose

sum is S, exactly half the sum of τ . So even if there is no solution to the original SS instance, there

is a solution to the Partition instance, which is not allowed.

What we do is add 1 to each of our new numbers. Thus, τ = x1, x2, . . . xn,K + 1, S −K + 1. The

sum of τ is 2S+2, and the two extra numbers add up to S+2, which is more than half 2S+2, hence

cannot both be in the subsequence of τ .

Here is a proof that our construction is a reduction of SS to Partition.

(a) Suppose σ has a subsequence whose sum is K. Then append S −K + 1 to that subsequence,

and its total is now S + 1, which is exactly half the sum of τ

(b) Conversely, suppose that there is a subsequence τ1 of τ whose total is S+1. Then the remaining

terms of τ form a subsequence τ2 whose sum is also S + 1. Since K + 1 and S − K + 1 total

2S+2, they cannot both be in either τ1 or τ2; thus S−K+1 is in just one of those subsequences,

say τ1. The remaining terms of τ1 form a subsequence of σ whose total is K.

That is, the given instance of SS is true if and only if the instance of Partition that we constructed

is true. That is the definition of a reduction, and our contruction takes linear time.



2. Give a P–time reduction of 3-SAT to the Independent Set problem.

An instance of IND, the independent set problem, is an ordered pair 〈G〉, 〈k〉 where G is a graph and

k is a positive number. The solution to that instance is true if there are k vertices of G which are

independent, meaning that no two of them are neighbors.

An instance of 3-SAT is a Boolean expression E in 3-CNF form. That is, E is the conjunction of

clauses, each of which is the disjunction of three terms, each of which is either a variable or the

negation of a variable. That is, E = C1 · C2 · C3 · · ·Ck where Ci = (ti,1 + ti,2 + ti,3) where each ti,j

is either a variable or the negation of a variable. Then E ∈ 3-SAT if E has a satisfying assignment.

Given a 3-CNF expression E, our reduction consists of constructing an instance 〈G〉k which is a

member of IND if and only if E is satisfiable. Let {vi,j : i ∈ {1, . . . k}, j ∈ {1, 2, 3}} be the vertices of

G. We say that the vertex vi,j corresponds to the term ti,j . Two terms ti,j and ti′,j′ are contradictory

if one of them is a variable and the other the negation of that variable, and we also call their

corresponding vertices in G contradictory. There is an edge from connecting vertex v = vi,j to vertex

v′ = vi′,j′ if either i = i′ or v and v′ are contradictory. Thus, the vertices corresponding to the terms

of one clause form a clique.

〈G〉〈k〉 is an instance of 3-CNF. Construction of that instance is clearly P–time. We need to show

that the construction is a reduction from 3-SAT to IND, namely that E ∈ 3-SAT if and only if

〈G〉〈k〉 ∈ IND.

Suppose I is an independent set k vertices of G. Then I must consist of exactly one member of each

clique. Let T be the set of terms corresponding to I. Assign truth values to each variable of E such

that each member of T is true. Variables which do not occur in T can be assigned arbitrary values.

The assignment is consistent, since I can contain no two contradictory vertices. Since at least one

term of each clause is assigned true, the assignment is satisfying.

Conversely, suppose E has a satisfying asignment. At least one term of each clause must be assigned

true. Let T be a set consisting of exactly one term of each clause, where that term is assigned true.

Let I be the set of k vertices of G corresponding to T . We need to show that I is independent. Two

members of I are in different cliques, hence are not connected by a clique edge. Since two members

of I in different cliques cannot be contradictory, since their corresponding terms are both assigned

true, and hence cannot be connected by an edge between two cliques. Thus I is an independent set

of order k.
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3. Use the pumping lemma to prove that L = {anbn : n ≥ 0} is not regular.

Claim 1 L is not regular.

Proof: By contradiction. Assume L is regular. Then L must have a pumping length, a positive

number p. Let w = apbp, which is a member of L of length greater than p. Therefore, by the

pumping lemma, there exist string x, y, z such that: 1. w = xyz

2. |xy| ≤ p

3. |y| > 0

4. For any i ≥ 0 xyiz ∈ L

By 1, xy is a prefix of w, and by 2, that prefix has length at most p. Thus, xy is a substring of the

prefix ap of w. It follows that y = ak for some k. By 3, k > 0. Let i = 0. By 4, xy0z = xz ∈ L. But

xz is obtained by deleting ak from w, hence xz = ap−kbp, which is not in L, contradiction.
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4. Prove that any language accepted by a DFA with p live (not dead) states has pumping length p.

Let M = (Σ, Q, q0, F, δ) be a DFA, where Q consists of p live states, and possibly a dead state. Recall

that F ⊆ Q is the set of final states of M , and δ : Q× Σ → Q is the transition function of M . As is

standard, we extend the second parameter of δ by concatenation, that is, for any q ∈ Q, δ(q, λ) = q

and δ(q, uv) = δ(δ(q, u), v) for any u, v ∈ Σ∗. Let L = L(M), and let w ∈ L be of length m ≥ p,

and write w = w1w2w3 · · ·wm. During the accepting computation of M with input w, let qt ∈ Q be

the state of M after reading w1w2 · · ·wt for any t ≤ m, thus δ(qt−1, wt) = qt. The list of states of

M during that computation is S = (q0, q1, . . . qm), where qm ∈ F , and qt must be live. S has length

m+1, which is greater than p. The first p+1 terms of S must contain a duplication, since there are

only p live states of M . That is, qj = qk for some 0 ≤ j < k ≤ p,

We let x = w1w2 · · ·wj . (Note that x = λ if j = 0.) Let y = wj+1 · · ·wk, and let z = wk+1 · · ·wm.

Then

1. w = xyz

2. |xy| = j ≤ p

3. y has length k − j > 0.

4. Finally, suppose i ≥ 0; we need to show xyiz ∈ L. Note that δ(qj , y) = qk = qj

q
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We illustrate computations of M in the figure. When M reads x its state changes from q0 to qj

When M reads y from qj , the computation loops from qj to qk, but those are the same state, so that

computation is a cycle. When M starts at qk and reads z its state ends at qm, a final state.

Now suppose, starting from q0, M reads xyiz for some i. The path of the computation through

the figure starts at q0, moves to qj = qk, loops i times around the cycle, and finally ends at qm, an

accepting state. Thus, xyiz ∈ L.
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