University of Nevada, Las Vegas Computer Science 456/656 Fall 2024 Answers to Assignment 5: Due Saturday October 19, 2024, 11:59 PM

Name:

You are permitted to work in groups, get help from others, read books, and use the internet.

1. Give a P -TIME reduction of the Subset Sum problem to Partition.

An instance of SS, the Subset Sum problem is a sequence of n positive numbers $\sigma = x_1, x_2, \ldots, x_n$ followed by a single positive number K . The solution to that instance is **true** if the terms of some subsequence of σ add up to K.

An instance of the Partition problem is a sequence of m positive numbers $\tau = y_1, y_2, \ldots y_m$. The solution to that instance is **true** if there is some subsequence of τ whose sum is half the sum of τ .

We define a reduction from the Subset Sum problem to Partition.

Let $(x_1, x_2, \ldots, x_n, K)$ be an instance of SS. Define $S = \sum_{i=1}^n x_i$. Without loss of generality, $S \geq K$, since otherwise (trivially) there is no solution to that instance. Our method is to define two additional numbers, and we reduce to an instance which contains all of σ , together with those two numbers.

The obvious choice is to let the two extra numbers be K and $S - K$. The sum of τ is then 2S, and we can see that if σ has a subsequence whose total is K, the subsequence of τ consisting of that subsequence together with $S - K$ will sum to exactly half the sum of τ .

But this solution, although nice, fails, because we could pick the subsequence of τ to be σ , whose sum is S, exactly half the sum of τ . So even if there is no solution to the original SS instance, there is a solution to the Partition instance, which is not allowed.

What we do is add 1 to each of our new numbers. Thus, $\tau = x_1, x_2, \ldots, x_n, K + 1, S - K + 1$. The sum of τ is $2S + 2$, and the two extra numbers add up to $S + 2$, which is more than half $2S + 2$, hence cannot both be in the subsequence of τ .

Here is a proof that our construction is a reduction of SS to Partition.

- (a) Suppose σ has a subsequence whose sum is K. Then append $S K + 1$ to that subsequence, and its total is now $S + 1$, which is exactly half the sum of τ
- (b) Conversely, suppose that there is a subsequence τ_1 of τ whose total is $S+1$. Then the remaining terms of τ form a subsequence τ_2 whose sum is also $S + 1$. Since $K + 1$ and $S - K + 1$ total $2S+2$, they cannot both be in either τ_1 or τ_2 ; thus $S-K+1$ is in just one of those subsequences, say τ_1 . The remaining terms of τ_1 form a subsequence of σ whose total is K.

That is, the given instance of SS is **true** if and only if the instance of Partition that we constructed is true. That is the definition of a reduction, and our contruction takes linear time.

2. Give a $\mathcal{P}\text{-TIME reduction of } 3\text{-SAT}$ to the Independent Set problem.

An instance of IND, the independent set problem, is an ordered pair $\langle G \rangle$, $\langle k \rangle$ where G is a graph and k is a positive number. The solution to that instance is **true** if there are k vertices of G which are *independent*, meaning that no two of them are neighbors.

An instance of 3-SAT is a Boolean expression E in 3-CNF form. That is, E is the conjunction of clauses, each of which is the disjunction of three terms, each of which is either a variable or the negation of a variable. That is, $E = C_1 \cdot C_2 \cdot C_3 \cdots C_k$ where $C_i = (t_{i,1} + t_{i,2} + t_{i,3})$ where each $t_{i,j}$ is either a variable or the negation of a variable. Then $E \in 3\text{-SAT}$ if E has a satisfying assignment.

Given a 3-CNF expression E, our reduction consists of constructing an instance $\langle G \rangle k$ which is a member of IND if and only if E is satisfiable. Let $\{v_{i,j} : i \in \{1, \ldots k\}, j \in \{1,2,3\}\}\)$ be the vertices of G. We say that the vertex $v_{i,j}$ *corresponds to* the term $t_{i,j}$. Two terms $t_{i,j}$ and $t_{i',j'}$ are *contradictory* if one of them is a variable and the other the negation of that variable, and we also call their corresponding vertices in G contradictory. There is an edge from connecting vertex $v = v_{i,j}$ to vertex $v' = v_{i',j'}$ if either $i = i'$ or v and v' are contradictory. Thus, the vertices corresponding to the terms of one clause form a clique.

 $\langle G \rangle \langle k \rangle$ is an instance of 3-CNF. Construction of that instance is clearly P–TIME. We need to show that the construction is a reduction from 3-SAT to IND, namely that $E \in 3$ -SAT if and only if $\langle G \rangle \langle k \rangle \in \text{IND}.$

Suppose I is an independent set k vertices of G. Then I must consist of exactly one member of each clique. Let $\mathcal T$ be the set of terms corresponding to $\mathcal I$. Assign truth values to each variable of E such that each member of $\mathcal T$ is true. Variables which do not occur in $\mathcal T$ can be assigned arbitrary values. The assignment is consistent, since $\mathcal I$ can contain no two contradictory vertices. Since at least one term of each clause is assigned true, the assignment is satisfying.

Conversely, suppose E has a satisfying asignment. At least one term of each clause must be assigned true. Let $\mathcal T$ be a set consisting of exactly one term of each clause, where that term is assigned true. Let I be the set of k vertices of G corresponding to T. We need to show that I is independent. Two members of $\mathcal I$ are in different cliques, hence are not connected by a clique edge. Since two members of I in different cliques cannot be contradictory, since their corresponding terms are both assigned true, and hence cannot be connected by an edge between two cliques. Thus $\mathcal I$ is an independent set of order k.

3. Use the pumping lemma to prove that $L = \{a^n b^n : n \ge 0\}$ is not regular.

Claim 1 L *is not regular.*

Proof: By contradiction. Assume L is regular. Then L must have a pumping length, a positive number p. Let $w = a^p b^p$, which is a member of L of length greater than p. Therefore, by the pumping lemma, there exist string x, y, z such that: 1. $w = xyz$

- 2. $|xy| \leq p$
- 3. $|y| > 0$
- 4. For any $i \geq 0$ $xy^i z \in L$

By 1, xy is a prefix of w, and by 2, that prefix has length at most p . Thus, xy is a substring of the prefix a^p of w. It follows that $y = a^k$ for some k. By 3, $k > 0$. Let $i = 0$. By 4, $xy^0z = xz \in L$. But xz is obtained by deleting a^k from w, hence $xz = a^{p-k}b^p$, which is not in L, contradiction. ı

4. Prove that any language accepted by a DFA with p live (not dead) states has pumping length p .

Let $M = (\Sigma, Q, q_0, F, \delta)$ be a DFA, where Q consists of p live states, and possibly a dead state. Recall that $F \subseteq Q$ is the set of final states of M, and $\delta: Q \times \Sigma \to Q$ is the transition function of M. As is standard, we extend the second parameter of δ by concatenation, that is, for any $q \in Q$, $\delta(q, \lambda) = q$ and $\delta(q, uv) = \delta(\delta(q, u), v)$ for any $u, v \in \Sigma^*$. Let $L = L(M)$, and let $w \in L$ be of length $m \geq p$, and write $w = w_1w_2w_3\cdots w_m$. During the accepting computation of M with input w, let $q_t \in Q$ be the state of M after reading $w_1w_2\cdots w_t$ for any $t \leq m$, thus $\delta(q_{t-1}, w_t) = q_t$. The list of states of M during that computation is $S = (q_0, q_1, \ldots q_m)$, where $q_m \in F$, and q_t must be live. S has length $m+1$, which is greater than p. The first $p+1$ terms of S must contain a duplication, since there are only p live states of M. That is, $q_j = q_k$ for some $0 \leq j < k \leq p$,

We let $x = w_1w_2\cdots w_j$. (Note that $x = \lambda$ if $j = 0$.) Let $y = w_{j+1}\cdots w_k$, and let $z = w_{k+1}\cdots w_m$. Then

- 1. $w = xyz$
- 2. $|xy| = j \leq p$
- 3. y has length $k j > 0$.
- 4. Finally, suppose $i \geq 0$; we need to show $xy^i z \in L$. Note that $\delta(q_j, y) = q_k = q_j$

We illustrate computations of M in the figure. When M reads x its state changes from q_0 to q_j When M reads y from q_j , the computation loops from q_j to q_k , but those are the same state, so that computation is a cycle. When M starts at q_k and reads z its state ends at q_m , a final state.

Now suppose, starting from q_0 , M reads xy^iz for some i. The path of the computation through the figure starts at q_0 , moves to $q_j = q_k$, loops i times around the cycle, and finally ends at q_m , and accepting state. Thus, $xy^iz \in L$.