Canonical Ordering and Recursive Enumeration

We define *canonical ordering* on strings as follows.

- 1. If u, v are strings and |u| < |v|, then u is less than v in the canonical ordering.
- 2. If u, v are string of the same length over an ordered alphabet Σ , we say that u is less than v in the canonical ordering if u comes before v in alphabetic order.

Every language is enumerable, in the sense that an enumeration of the the language exists, but that doesn't mean that an enumeration can be calculated. A language L is defined to be *recursively enumerable* (\mathcal{RE}) if there is a machine which enumerates L. There are uncountably many languages over a given alphabet Σ , but only countably many of those are recursively enumerable.

Theorem 1 If a language L is enumerated in canonical order by some machine, then L is decidable.

Proof: Let $w_1, w_2, ...$ be the canonical enumeration of L, which is given by some machine. The following program decides L.

```
Read w
For i = 1 to \infty
If w_i = w HALT ACCEPT
If w_i > w in the canonical ordering HALT REJECT
```

Theorem 2 If a language L is recursive (decidable), then L is enumerated in canonical order by some machine.

Proof: Let Σ be the alphabet of L. Let w_1, w_2, \ldots be the canonical enumeration of Σ^* . The following program write an enumeration of L in canonical order.

For i = 1 to ∞ If $(w_i \in L)$ write w_i

Theorem 3 If a language L is recursively enumerable, then L is accepted by some machine.

Proof: Suppose L is recursively enumerable. Then there is some program which (possibly running forever) which writes an enumeration of L. Let w_1, w_2, \ldots be that enumeration. The following program accepts L:

```
Read w
For i = 1 to \infty
If(w = w_i) HALT and ACCEPT
```

Theorem 4 If a language L is accepted by some machine M, then L is recursively enumerable.

Proof: Let M be a machine which accepts a language L over an alphabet Sigma The following program enumerates L. Let w_1, w_2, \ldots be the canonical ordering of Σ^* . The following program enumerates L.

For t = 1 to ∞ For i = 1 to t If (*M* accepts w_i within t time units) write w_i