Reductions and $N P$ –Completeness

Reductions

If L_1 , L_2 are languages over the alphabets Σ_1 and Σ_2 , respectively, a *reduction* from L_1 to L_2 is function $R: \Sigma_1^* \to \Sigma_2^*$ ^{*}/₂ such that $R(w) \in L_2$ if and only if $w \in L_1$. We write $L_1 \leq L_2$ to mean that there is a *recursive* (computable) reduction of L_1 to L_2 , and we write $L_1 \leq_{\mathcal{P}} L_2$. if there is a \mathcal{P} -TIME reduction.

Reductions are used often in practice to shortcut calculations. A problem that can be easily reduced to an easy problem is easy.

Remark 1 If $L_1 \leq_P L_2$ and L_2 *is* P *, then* L_1 *is* P *.*

Proof: Let $F: L_2 \to \{0, 1\}$ be a polynomial time function which decides L_2 and R a polynomial time reduction of L_1 to L_2 . The composition $F \circ R$ decides L_1 in polynomial time. \Box

Instances. A reduction from a problem $P_1 \subseteq \Sigma_1^*$ ^{*}₁ to a problem $P_2 \subseteq \Sigma^*$ need only be defined on instances of P_1 , since we define $R(w) = \lambda$ if w is not an instance of P_1 Reductions found in the literature or on the internet (or in my class) are typically defined only on instances.

A language L is in the class $\mathcal{P}-\text{TIME}$ (or simply \mathcal{P}) if there is some constant k and some machine¹ which decides L in $O(n^k)$ time, where n is the number of bits of input.

A language L is in the class $N\mathcal{P}$ –TIME (or simply $N\mathcal{P}$) if there is some constant k and some non-deterministic machine which accepts L is polynomial time. The flow chart of that non-determinstic computation is a binary tree of height $O(n^k)$, where the input is accepted at at least one leaf. Thus, L is accepted by some deterministic machine in exponential time; simply try every path through the computation tree! Every deterministic machine is also a non-deterministic machine, hence $P \subseteq \mathcal{NP}$. The converse is an open question.

Verification Definition of $N P$

A language L is \mathcal{NP} if and only if there is some machine V some integer k such that:

- 1. For every $w \in L$ there exists a string c, called a *certificate* for w, such that V accepts the string (w, c) in $O(n^k)$ time.
- 2. If $w \notin L$ and c is any string, V does not accept the string (w, c) .

¹Deterministic, unless otherwise specified.

$\mathcal{NP}-\mathbf{Completeness}$

We define a language L to be $\mathcal{NP}-complete$ if

- 1. $L \in \mathcal{NP}$, and
- 2. Every \mathcal{NP} language reduces to L in polynomial time.

If any given \mathcal{NP} -complete problem is \mathcal{P} , then $\mathcal{P} = \mathcal{NP}$, as stated by Theorem 1 below.

Theorem 1 If there is any language which is both P -TIME and $\mathcal{NP}-complete$, then $P =$ \mathcal{NP} .

Proof: Suppose that there is a language L_1 which is both P –TIME and $N P$ –complete. Trivially, $\mathcal{P} \subseteq \mathcal{NP}$. We need to show that $\mathcal{NP} \subseteq \mathcal{P}$. Let L_2 be \mathcal{NP} , then $L_2 \leq_{\mathcal{P}} L_1$ by the definition of \mathcal{NP} -completeness. Since L_1 is \mathcal{P}, L_2 is \mathcal{P} by Remark 1. \Box

Boolean Satisfiability

We define a *Boolean expression* to be an expression involving variables and operators, where all variables have Boolean type and all operators have Boolean operands. To shorten our notation, we use "+" for *or*, "." for *and*, and "!" for *not*. An *assignment* of a Boolean expression E is an assignment of truth values (there are only two truth values, $true = 1$ and $false = 0$) to each variable that appears in E . That assignment is *satisfying* if given those values, E is *true*. E is *satisfiable* if it has a satisfying assignment, otherwise E is a *contradiction*. For example, $x \cdot !x$ is a contradiction, since its value is false regardless of the value of x. A satisfiable expression can have assignments that are not satisfying, such as $x+!y$, which has three satisfying asignments and one assignment that is not satisfying, namely $x = 0, y = 1$. Any satisfying assignment of $E \in SAT$ is a certificate for E.

Let BOOL be the set of all Boolean expressions, which is a context-free language, and let $SAT \subseteq BOOL$ be the satisfiable expressions.

Theorem 2 (Cook-Levin) *SAT is* $\mathcal{NP}-complete$.

Theorem 3 If L_1 is NP-complete and L_2 is NP, and there is a polynomial reduction R_1 *of* L_1 *to* L_2 *, then* L_2 *is* $\mathcal{NP}-complete$ *.*

Proof: We need only prove that every \mathcal{NP} language reduces to L_2 in polynomial time. Let $L_3 \in \mathcal{NP}$. Since L_1 is \mathcal{NP} -complete, there is a polynomial time reduction R_2 of L_3 to L_1 . The composition $R_2 \circ R_1$ is a polynomial time reduction of L_3 to L_2 . \Box

SAT, or Boolean Satisfiability, is the "granddaddy" $N\mathcal{P}$ -complete problem. Here are some reductions that give you additional \mathcal{NP} –complete problems.

A Boolean expression is in *conjuctive normal form* if it is the conjunction (and) of *clauses*, each of which is the disjunction (or) of *terms*, each of which is either a variable or the negation (not) of a variable. CNF \subseteq BOOL is the set of all Boolean expressions written in conjunctive normal form, while k -CNF \subseteq CNF is the subset where each clause has k terms.

- 1. For any $k \geq 3$, SAT $\leq_{\mathcal{P}} k$ -SAT: thus k-SAT is NP-complete.
- 2. The *Independent Set* problem, IND is \mathcal{NP} -complete, since 3-SAT $\leq_{\mathcal{P}}$ IND.
- 3. The *subset sum*–problem, SS is \mathcal{NP} –complete, since INDT $\leq_{\mathcal{P}}$ SS.
- 4. The *Partition Problem* is \mathcal{NP} -complete, since $\text{SST} \leq_{\mathcal{P}} \text{Partition}$.

The Independent Set Problem

Given a graph G an *independent set* of G is defined to be a set I of vertices of G such that no two members of $\mathcal I$ are connected by an edge of G . The *order* of $\mathcal I$ is defined to be its size, *i.e.*., simply how many vertices it contains.

An instance of the *independent set problem* is $\langle G \rangle \langle k \rangle$, where G is a graph and k is an integer. The question is, "Does G have an independent set of order k ?"

The language IND We define IND to be the set of all $\langle G \rangle \langle k \rangle$ such that G has an independent set of order k.

Theorem 4 *IND is* \mathcal{NP} *complete.*

Proof: Let E \in 3-SAT. Then $e = C_1 \cdot C_2 \cdot \cdots \cdot C_k$, where $C_i = (t_{i,1} + t_{i,2} + t_{i,3})$, where each $t_{i,j}$ is either x or x , where x is a variable.

We now define a graph $G[E] = (V, E)$, where $V = \{v_{i,j} : 1 \le i \le k, 1 \le j \le 3\}$ is the set of vertices of $G[e]$, and E the set of edges of $G[E]$, as follows:

- 1. For each $1 \leq i \leq k$, there is an edge from $v_{i,j}$ to $v_{i,j'}$ for all $1 \leq j < j' \leq 3$. Call these *short* edges.
- 2. If $t_{i,j} = x$ and $t_{i',j'} = !x$ for some variable x, there is an edge from $v_{i,j}$ to $v_{i',j'}$. Call these *long* edges.
- 3. There are no other edges.

Let $R(e) = G[e], k$ We now show that $R(e) \in \text{IND}$ if and only if e is satisfiable. For each i, let K_i be the subgraph of $G[e]$ consisting of the three vertices $v_{i,1}, v_{i,2}, v_{i,3}$, and the edges connecting them. We call this a *3-clique.*

Suppose $G[e], k \in \text{IND}$. Let $I \subset V$ be an independent set of of size k. Since K_i is a 3-clique, and the number of such cliques is equal to k, exactly one member of I must lie in each K_i . We define an assignment of e. If $v_{i,j} \in I$ and $t_{i,j} = x$ for some variable x, assign the value *true* to x, while if $t_{i,j} = x$, assign *false* to x. Assign all remaining variables arbitrary Boolean values. This assignment is well-defined, for if $v_{i,j}, v_{i',j'} \in I$ for $i \neq i'$, there can be no edge between those two vertices, which implies that $t_{i,j}$ does not contradict $t_{i',j'}$. Furthermore, each clause has one term which is assigned true, hence each clause is assigned true, and we thus the assignment is satisfying.

Conversely, suppose that there is a satisfying assignment of e . That means each clause C_i must contain one term, say $t_{i,j[i]}$ which is true under the assignment. Let $I = \{v_{i,j[i]}\}\subseteq V$. No two elements of I are in the same clique K_i , hence there is no short edge connecting them, and there can be no long edge connecting them because $v_{i,j[i]}$ and $v_{i',j[i']}$ are both assigned true and hence cannot contradict each other. Thus I is an independent set. \Box

Example

A non-trivial example would have at least eight clauses, but I'll keep it simple. Let E be the 3CNF expression

$$
(x+y+z) \cdot (!x+!y+w) \cdot (y+!z+!w) \cdot (!y+z+!w)
$$

Then $k = 4$. The following diagram illustrates $G[E]$. The vertices of I are circled in red. The satisfying assignment shown is $x = \text{false}$, $y = \text{true}$, $w = \text{false}$, while z can be assigned either true or false.

