
Reductions and NP–Completeness

Reductions

If L1, L2 are languages over the alphabets Σ1 and Σ2, respectively, a reduction from L1 to
L2 is function R : Σ∗

1 → Σ∗
2 such that R(w) ∈ L2 if and only if w ∈ L1. We write L1 ≤ L2 to

mean that there is a recursive (computable) reduction of L1 to L2, and we write L1 ≤P L2.
if there is a P–time reduction.

Reductions are used often in practice to shortcut calculations. A problem that can be easily
reduced to an easy problem is easy.

Remark 1 If L1 ≤P L2 and L2 is P, then L1 is P.

Proof: Let F : L2 → {0, 1} be a polynomial time function which decides L2 and R a
polynomial time reduction of L1 to L2. The composition F ◦ R decides L1 in polynomial
time. ✷

Instances. A reduction from a problem P1 ⊆ Σ∗
1 to a problem P2 ⊆ Σ∗

2 need only
be defined on instances of P1, since we define R(w) = λ if w is not an instance of P1

Reductions found in the literature or on the internet (or in my class) are typically defined
only on instances.

A language L is in the class P–time (or simply P) if there is some constant k and some
machine1 which decides L in O(nk) time, where n is the number of bits of input.

A language L is in the class NP–time (or simply NP) if there is some constant k and
some non-deterministic machine which accepts L is polynomial time. The flow chart of that
non-determinstic computation is a binary tree of height O(nk), where the input is accepted
at at least one leaf. Thus, L is accepted by some deterministic machine in exponential time;
simply try every path through the computation tree! Every deterministic machine is also
a non-deterministic machine, hence P ⊆ NP. The converse is an open question.

Verification Definition of NP

A language L is NP if and only if there is some machine V some integer k such that:

1. For every w ∈ L there exists a string c, called a certificate for w, such that V accepts
the string (w, c) in O(nk) time.

2. If w /∈ L and c is any string, V does not accept the string (w, c).

1Deterministic, unless otherwise specified.

1



NP–Completeness

We define a language L to be NP–complete if

1. L ∈ NP, and

2. Every NP language reduces to L in polynomial time.

If any given NP–complete problem is P, then P = NP, as stated by Theorem 1 below.

Theorem 1 If there is any language which is both P–time and NP–complete, then P =
NP.

Proof: Suppose that there is a language L1 which is both P–time and NP–complete.
Trivially, P ⊆ NP. We need to show that NP ⊆ P. Let L2 be NP, then L2 ≤P L1 by the
definition of NP-completeness. Since L1 is P, L2 is P by Remark 1. ✷

Boolean Satisfiability

We define a Boolean expression to be an expression involving variables and operators, where
all variables have Boolean type and all operators have Boolean operands. To shorten our
notation, we use “+” for or , “·” for and, and “!” for not. An assignment of a Boolean
expression E is an assignment of truth values (there are only two truth values, true = 1
and false = 0) to each variable that appears in E. That assignment is satisfying if given
those values, E is true. E is satisfiable if it has a satisfying assignment, otherwise E is
a contradiction. For example, x·!x is a contradiction, since its value is false regardless of
the value of x. A satisfiable expression can have assignments that are not satisfying, such
as x+!y, which has three satisfying asignments and one assignment that is not satisfying,
namely x = 0, y = 1. Any satisfying assignment of E ∈ SAT is a certificate for E.

Let BOOL be the set of all Boolean expressions, which is a context-free language, and let
SAT⊆BOOL be the satisfiable expressions.

Theorem 2 (Cook-Levin) SAT is NP–complete.

Theorem 3 If L1 is NP-complete and L2 is NP, and there is a polynomial reduction R1

of L1 to L2, then L2 is NP–complete.

Proof: We need only prove that every NP language reduces to L2 in polynomial time. Let
L3 ∈ NP. Since L1 is NP-complete, there is a polynomial time reduction R2 of L3 to L1.
The composition R2 ◦R1 is a polynomial time reduction of L3 to L2. ✷

SAT, or Boolean Satisfiability, is the “granddaddy” NP–complete problem. Here are some
reductions that give you additional NP–complete problems.

2



A Boolean expression is in conjuctive normal form if it is the conjunction (and) of clauses,
each of which is the disjunction (or) of terms, each of which is either a variable or the
negation (not) of a variable. CNF ⊆ BOOL is the set of all Boolean expressions written in
conjunctive normal form, while k-CNF ⊆ CNF is the subset where each clause has k terms.

1. For any k ≥ 3, SAT≤P k-SAT: thus k-SAT is NP-complete.

2. The Independent Set problem, IND is NP-complete, since 3-SAT≤P IND.

3. The subset sum–problem, SS is NP–complete, since INDT≤P SS.

4. The Partition Problem is NP-complete, since SST≤P Partition.

The Independent Set Problem

Given a graph G an independent set of G is defined to be a set I of vertices of G such that
no two members of I are connected by an edge of G. The order of I is defined to be its
size, i.e.., simply how many vertices it contains.

An instance of the independent set problem is 〈G〉〈k〉, where G is a graph and k is an
integer. The question is, ”Does G have an independent set of order k?”

The language IND We define IND to be the set of all 〈G〉〈k〉 such that G has an
independent set of order k.

Theorem 4 IND is NP complete.

Proof: Let E ∈ 3-SAT. Then e = C1 ·C2 · · · · ·Ck, where Ci = (ti,1 + ti,2 + ti,3), where each
ti,j is either x or !x, where x is a variable.

We now define a graph G[E] = (V,E), where V = {vi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ 3} is the set of
vertices of G[e], and E the set of edges of G[E], as follows:

1. For each 1 ≤ i ≤ k, there is an edge from vi,j to vi,j′ for all 1 ≤ j < j′ ≤ 3. Call these
short edges.

2. If ti,j = x and ti′,j′ = !x for some variable x, there is an edge from vi,j to vi′,j′ . Call
these long edges.

3. There are no other edges.

Let R(e) = G[e], k) We now show that R(e) ∈ IND if and only if e is satisfiable. For each i,
let Ki be the subgraph of G[e] consisting of the three vertices vi,1, vi,2, vi,3, and the edges
connecting them. We call this a 3-clique.

Suppose G[e], k ∈ IND. Let I ⊂ V be an independent set of of size k. Since Ki is a 3-clique,
and the number of such cliques is equal to k, exactly one member of I must lie in each Ki.

3



We define an assignment of e. If vi,j ∈ I and ti,j = x for some variable x, assign the
value true to x, while if ti,j =!x, assign false to x. Assign all remaining variables arbitrary
Boolean values. This assignment is well-defined, for if vi,j , vi′,j′ ∈ I for i 6= i′, there can
be no edge between those two vertices, which implies that ti,j does not contradict ti′,j′ .
Furthermore, each clause has one term which is assigned true, hence each clause is assigned
true, and we thus the assignment is satisfying.

Conversely, suppose that there is a satisfying assignment of e. That means each clause Ci

must contain one term, say ti,j[i] which is true under the assignment. Let I =
{

vi,j[i]
}

⊆ V .

No two elements of I are in the same clique Ki, hence there is no short edge connecting
them, and there can be no long edge connecting them because vi,j[i] and vi′,j[i′] are both
assigned true and hence cannot contradict each other. Thus I is an independent set. ✷

Example

A non-trivial example would have at least eight clauses, but I’ll keep it simple. Let E be
the 3CNF expression

(x+ y + z) · (!x+!y + w) · (y+!z+!w) · (!y + z+!w)

Then k = 4. The following diagram illustrates G[E]. The vertices of I are circled in red.
The satisfying assignment shown is x = false, y = true, w = false, while z can be assigned
either true or false.

y

!w

!w

!y

!y
y

!z

z

x !x

w

z

(x+y+z) (!x+!y+w) (y+!z+!w) (!y+z+!w)

C1 C2

K 3

K 2

K 4

K 1

C3 C4

4


