P and NP

Definitions

Throughout, if we say “machine” we mean deterministic machine, unless we specifically sa;
b b
“non-deterministic.”

A languague L over an alphabet Y is decided by a machine M if, given any input string
w € ¥*, M halts and accepts w if w € L, and rejects w if w ¢ L.

A languague L over an alphabet X is accepted by a non-deterministic machine M if both
of these conditions hold:

e For any w € L, there is a computation of M with input w which halts in an accepting
state.

o If w ¢ L, there is no computation of M with input w which halts in an accepting
state.

Without loss of generality, we assume that at any point in a computation of a non-
deterministic machine there are at most two choices. We can make this assumption since
multiway branching can be emulated by sequential two-way branching.

Guide Strings. A guide string is a string which tells a non-deterministic machine which
choice to make at each step. Since we are assuming that branch points are two-way, a guide
string is a binary string.

Polynomially Bounded Functions. A function f(n) is polynomially bounded in n if there
is a constant k such that f(n) is eventually less than n*, meaning that for some number
N, f(n) < n* for all n > K. Let P(n) be the class of functions which are polynomially
bounded in n.

A language L over an alphabet ¥ is in the class P—-TIME, usually written as simply P, if
there is some machine M which decides L in polynomial time, meaning that for any w € ¥*,
M decides whether an input string w € ¥* is a member of L in time which is polynomially
bounded in n, where n = |w|, the length of the string w. That is, there is some constant k

such that, for any w € ¥*, M accepts w within O(|w|k> time if and only if w € L.

L is the class N'P-TIME if there is a non-deterministic machine M which accepts L is
polynomial time. That is, there is a constant k such that, for every w € L, there is a



computation of M with input w which reaches an accepting state in no more more than
n® steps, and furthermore, that for any input w ¢ L, there is no computation of M which
reaches an accepting state. Since every deteriministic machine is also non-deterministic,
P-TIME C NP-TIME.

Theorem 1 Every NP language is decidable.

Proof: Let L be an NP language, and k a constant and M a non-deterministic machine
that accepts L in n* time. Let w € ¥*, n = |w|, and B the set of all binary strings of length
\w]k. Note that B has order 2. Let M; be a deterministic machine which emulates M
once for each guide string, until it either reaches an accepting state of M, in which case it
accepts w, or has used all the guide strings without reaching an accepting state of M, in
which case it rejects w. Thus, My accepts w if and only if M accepts w, since, if M accepts
w, there must be some sequence of choices M can make which leads to accepting state. O

In summary, Theorem 1 states that any language accepted by a non-deterministic machine
in polynomial time is decided by some deterministic machine in exponential time.

The way we constructed My might seem inefficient. Can we do better? Can every NP
language be decided in polynomial time? That is the same as saying N'P—TIME = P—TIME.
No one knows any proof that this statement is either true or false — it is commonly stated
to be the most important open problem in the theory of computation, and certainly is one
of the most important open problems in all mathematics.

Verifier Definition of NP
There is an equivalent definition of /P which is frequently easier to work with, the verifier
definition, given below.

Let L C ¥* be a language. Then L is NP if and only if there is an integer k& and a machine
V, called a verifier of L, Basically, V verifies that w € L using a certificate c¢. An input of
V' is the concatenation w, c where w € ¥*, and its output is Boolean.

For any w € ¥*, and n = |w|.

1. If w € L, there is some certificate ¢ such that V returns 1 (true) in P(n) time.

2. If w ¢ L, then V always returns 0 (false) regardless of the choice of certificate.

It is important to note that you have to choose a correct certificate. That is, even if w € L,
V will return 0 given input w, ¢ if ¢ is not chosen correctly.

Boolean Satisfiability

We now consider one of the most important A'P languages, Boolean satisfiability, abbrevi-
ated SAT, which in fact is N’P—complete, a property we define later.



let BOOL be the language of all Boolean expressions, over an appropriate alphabet. An
assignment of an expression £ € BOOL is a mapping of the set of all variables which appear
in E to the Boolean alphabet {0, 1}, where 0 means false and 1 means true. The assignment
is satisfying if replacing each variable by its assigned truth value causes F to become true.
SAT is the set of Boolean expressions which are satisfiable, i.e. have satisfying assignments.

It is easy to describe a verifier for SAT. A certificate for any F € SAT is a satisfying
assignment of E. For example, if F; is the expression (lz + y) * (ly + z), the assignment
z =0,y =1,z = 1 satisfies £, while the assignment x = 1,y = 0,2z = 1 does not. On the
other hand, the expression Fy = x * (y + z) * (lz+!y) * (12) is a contradiction, i.e. has no
satisfying assignment. Hence F; € SAT, while E5 ¢ SAT. Our verifier is a simple program
that evaluates E after using c to assign a truth value to each variable.



