P and $N P$

Definitions

Throughout, if we say "machine" we mean deterministic machine, unless we specifically say "non-deterministic."

A languague L over an alphabet Σ is *decided* by a machine M if, given any input string $w \in \Sigma^*$, M halts and accepts w if $w \in L$, and rejects w if $w \notin L$.

A languague L over an alphabet Σ is accepted by a non-deterministic machine M if both of these conditions hold:

- For any $w \in L$, there is a computation of M with input w which halts in an accepting state.
- If $w \notin L$, there is no computation of M with input w which halts in an accepting state.

Without loss of generality, we assume that at any point in a computation of a nondeterministic machine there are at most two choices. We can make this assumption since multiway branching can be emulated by sequential two-way branching.

Guide Strings. A *quide string* is a string which tells a non-deterministic machine which choice to make at each step. Since we are assuming that branch points are two-way, a guide string is a binary string.

Polynomially Bounded Functions. A function $f(n)$ is polynomially bounded in n if there is a constant k such that $f(n)$ is eventually less than n^k , meaning that for some number N, $f(n) < n^k$ for all $n > K$. Let $\mathcal{P}(n)$ be the class of functions which are polynomially bounded in n.

A language L over an alphabet Σ is in the class P–TIME, usually written as simply P, if there is some machine M which decides L in polynomial time, meaning that for any $w \in \Sigma^*$, M decides whether an input string $w \in \Sigma^*$ is a member of L in time which is polynomially bounded in n, where $n = |w|$, the length of the string w. That is, there is some constant k such that, for any $w \in \Sigma^*$, M accepts w within $O(|w|^k)$ time if and only if $w \in L$.

L is the class $N\mathcal{P}$ –TIME if there is a non-deterministic machine M which accepts L is polynomial time. That is, there is a constant k such that, for every $w \in L$, there is a computation of M with input w which reaches an accepting state in no more more than n^k steps, and furthermore, that for any input $w \notin L$, there is no computation of M which reaches an accepting state. Since every deteriministic machine is also non-deterministic, $\mathcal{P}\text{-}\mathrm{TIME} \subseteq \mathcal{NP}\text{-}\mathrm{TIME}.$

Theorem 1 Every \mathcal{NP} language is decidable.

Proof: Let L be an \mathcal{NP} language, and k a constant and M a non-deterministic machine that accepts L in n^k time. Let $w \in \Sigma^*$, $n = |w|$, and B the set of all binary strings of length $|w|^k$. Note that $\mathcal B$ has order 2^{n^k} . Let M_2 be a deterministic machine which emulates M once for each guide string, until it either reaches an accepting state of M , in which case it accepts w, or has used all the guide strings without reaching an accepting state of M , in which case it rejects w. Thus, M_2 accepts w if and only if M accepts w, since, if M accepts w, there must be some sequence of choices M can make which leads to accepting state. \Box

In summary, Theorem 1 states that any language accepted by a non-deterministic machine in polynomial time is decided by some deterministic machine in exponential time.

The way we constructed M_2 might seem inefficient. Can we do better? Can every \mathcal{NP} language be decided in polynomial time? That is the same as saying $N\mathcal{P}-\text{TIME} = \mathcal{P}-\text{TIME}$. No one knows any proof that this statement is either true or false – it is commonly stated to be the most important open problem in the theory of computation, and certainly is one of the most important open problems in all mathematics.

Verifier Definition of $N P$

There is an equivalent definition of \mathcal{NP} which is frequently easier to work with, the verifier definition, given below.

Let $L \subseteq \Sigma^*$ be a language. Then L is \mathcal{NP} if and only if there is an integer k and a machine V, called a verifier of L, Basically, V verifies that $w \in L$ using a certificate c. An input of V is the concatenation w, c where $w \in \Sigma^*$, and its output is Boolean.

For any $w \in \Sigma^*$, and $n = |w|$.

- 1. If $w \in L$, there is some certificate c such that V returns 1 (true) in $\mathcal{P}(n)$ time.
- 2. If $w \notin L$, then V always returns 0 (false) regardless of the choice of certificate.

It is important to note that you have to choose a *correct* certificate. That is, even if $w \in L$, V will return 0 given input w, c if c is not chosen correctly.

Boolean Satisfiability

We now consider one of the most important \mathcal{NP} languages, Boolean satisfiability, abbreviated SAT, which in fact is $N\mathcal{P}$ –complete, a property we define later.

let BOOL be the language of all Boolean expressions, over an appropriate alphabet. An assignment of an expression $E \in \text{BOOL}$ is a mapping of the set of all variables which appear in E to the Boolean alphabet $\{0, 1\}$, where 0 means false and 1 means true. The assignment is *satisfying* if replacing each variable by its assigned truth value causes E to become true. SAT is the set of Boolean expressions which are satisfiable, *i.e.* have satisfying assignments.

It is easy to describe a verifier for SAT. A *certificate* for any $E \in SAT$ is a satisfying assignment of E. For example, if E_1 is the expression $(lx + y) * (ly + z)$, the assignment $x = 0, y = 1, z = 1$ satisfies E_1 , while the assignment $x = 1, y = 0, z = 1$ does not. On the other hand, the expression $E_2 = x * (y + z) * (x+y) * (x)$ is a contradiction, *i.e.* has no satisfying assignment. Hence $E_1 \in SAT$, while $E_2 \notin SAT$. Our verifier is a simple program that evaluates E after using c to assign a truth value to each variable.