
The CYK Algorithm

Every Context-free language can be decided in polynomial time, using the CYK (Cook, Younger, and Kura-

towski) dynamic programming algorithm.

Notation: If A is a variable of a context-free grammar with terminal alphabet Σ, we let L(A) denote the

set of strings over Σ can can be derived from A.

A Chomsky Normal Form grammar is a CF grammar with only two kinds of productions. The left-hand-

side of one of these productions is, of course, a variable. The right-hand-side is either a terminal or two

variables.

If L is any CFL which does not contain the empty string, there is a CNF grammar which generates L. If L

is a CFL language which contains the empty string, we can simply delete the empty string, and the language

is still context-free. Thus, there is some CNF grammar which generates L − {λ}. In this handout, we only

consider languages which do not contain the empty string. The CYK algorithm determines whether a given

string is a member of L(G), where G is a Chomsky Normal Form grammar.

Subproblems of an Instance of CYK.

If w = a1a2 . . . an is any string, let w[i, j] denote the substring ai . . . aj , for any 1 ≤ i ≤ j ≤ n. An instance of

the CYG membership problem is the ordered pair (G,w) where G is a context-free grammar and w is a string.

That pair is a member of the CYG membership language if w ∈ L(G).

A subproblem of that instance is a pair (A,w[i, j]), where A is a variable of the grammar G and w[i, j] is

a substring of w. The value of this subproblem is true if there is a derivation A
∗

⇒ w[i, j] using the grammar

G, otherwise false. iff m is the number of variables of G, there are m
(

n+1

2

)

subproblems instance.

Computing Subproblems

. Let G be a given CNF grammar and w = a1a2 . . . an a string. Let A be a variable of G.

1. For any i ∈ {1, . . . n} (A, i, i) is true if and only if A → ai is a derivation of G.

2. For any 1 ≤ i < j ≤ n, (A, i, j) is true if and only if, for variables B,C of G, A → BC is a derivation

and (B, i, k) and (C, k + 1, j) for some i ≤ k < j.

Walking Through CYK by Hand

The standard method of computing CYK by hand is to use a triangular matrix with
(

n+1

2

)

entries, which we

call cells, C[i, j] for all 1 ≤ i ≤ j ≤ n. Each cell is drawn as a square, and the metrix consists of these
(

n+1

2

)

squares. In descriptions on the internet, the matrix is drawn rectilinearly, but I find it more natural to place

all C[i, i] at the bottom level, all C[i, i + 1] at the next level, and C[1, n] at the top corner, each square at a

45o angle. If A is a variable of G, then A ∈ C[i, j] if and only if (A, i, j) = true. Then w ∈ L if and only if

the start symbol is a member of C[1, n].

1

Example: Dyck Language Let

L be the Dyck language, minus the

empty string. L is generated by the

following CNF grammar.

S → AB

A → (

B →)

A → AS

A → SA

Let w = (())(), which we write below

the figure. Filling in all the cells, we

obtain the figure shown. (())() ∈ L,

since S ∈ C[1, 6]. ()())(

A B

S

A

S

B BA A

S

S

A

Example. Let G be the CNF

grammar:

S → IS

S → WS

S → XY

X → IS

Y → ES

S → a

E → e

I → i

W → w

Here is the CYK matrix with the

initial string w = ieiaea written

below the bottom row. Since S is

not in the top cell, w /∈ L.

e

I I S E

X
S

E S

aaiei

Y

S

Y

Y

Indicating the Parse Tree. For the next example, we use the same grammar G as for the previous example.

and we let w = iiwaea. G is ambiguous, and there are two parse trees for w, as shown in blue and red. Both

parse trees can be found in the CYK matrix. A variable is in a cell because of one of the two computational

rules given above. For example, I ∈ C[2, 2] because I → i and a2 = i, and X is in C[2, 4] because X → IS,

I ∈ C[2, 2], and S ∈ C[3, 4].

I I W S E S

S

S

a e aii w

S

S

S

I

S

SE

I

S

S

i e a

SW

w

i

S

W S

w

E S

a

e a

I

i

SI

S

i

X Y

X Y
X

X

Y

X

2

