The CYK Algorithm

Every Context-free language can be decided in polynomial time, using the CYK (Cook, Younger, and Kura-

towski) dynamic programming algorithm.

Notation: If A is a variable of a context-free grammar with terminal alphabet X, we let L(A) denote the

set of strings over ¥ can can be derived from A.

A Chomsky Normal Form grammar is a CF grammar with only two kinds of productions. The left-hand-
side of one of these productions is, of course, a variable. The right-hand-side is either a terminal or two
variables.

If L is any CFL which does not contain the empty string, there is a CNF grammar which generates L. If L
is a CFL language which contains the empty string, we can simply delete the empty string, and the language
is still context-free. Thus, there is some CNF grammar which generates L — {A}. In this handout, we only
consider languages which do not contain the empty string. The CYK algorithm determines whether a given

string is a member of L(G), where G is a Chomsky Normal Form grammar.

Subproblems of an Instance of CYK.

If w=aias...ay, is any string, let w(i, j] denote the substring a; ...a;, for any 1 <7 < j < n. An instance of
the CYG membership problem is the ordered pair (G, w) where G is a context-free grammar and w is a string.
That pair is a member of the CYG membership language if w € L(G).

A subproblem of that instance is a pair (A, w[i, j]), where A is a variable of the grammar G and wli, j] is

a substring of w. The value of this subproblem is true if there is a derivation A = wli, j] using the grammar

n+1
2

G, otherwise false. iff m is the number of variables of Gz, there are m() subproblems instance.

Computing Subproblems

. Let G be a given CNF grammar and w = ajas...a, a string. Let A be a variable of G.

1. For any i € {1,...n} (A,4,%) is true if and only if A — a; is a derivation of G.

2. For any 1 <i < j <n, (A,i,7) is true if and only if, for variables B,C of G, A — BC' is a derivation
and (B,i,k) and (C,k +1,j) for some i < k < j.

Walking Through CYK by Hand

The standard method of computing CYK by hand is to use a triangular matrix with (”‘2"1) entries, which we
call cells, C[i,j] for all 1 <1i < j < n. Each cell is drawn as a square, and the metrix consists of these ("'QH)
squares. In descriptions on the internet, the matrix is drawn rectilinearly, but I find it more natural to place
all C[i, 7] at the bottom level, all C[i,i + 1] at the next level, and C[1,n] at the top corner, each square at a
45° angle. If A is a variable of G, then A € C[i,] if and only if (A,,j) = true. Then w € L if and only if
the start symbol is a member of C[1,n].

Example: Dyck Language Let
L be the Dyck language, minus the
empty string. L is generated by the

following CNF grammar.
S — AB

A—(

B —)

A— AS

A— SA
Let w = (())(), which we write below
the figure. Filling in all the cells, we
obtain the figure shown. (())() € L,
(()) ()

since S € C[1,6].
Example. Let G be the CNF

grammar:

S —1IS

S—WS ‘
S — XY
X =18 0

Y - ES
S—a
E—e
I—1
W —w
Here is the CYK matrix with the
initial string w = teiaea written
a

below the bottom row. Since S is i e i a e
not in the top cell, w ¢ L.

Indicating the Parse Tree. For the next example, we use the same grammar G as for the previous example.
and we let w = diwaea. G is ambiguous, and there are two parse trees for w, as shown in blue and red. Both
parse trees can be found in the CYK matrix. A variable is in a cell because of one of the two computational
rules given above. For example, I € C[2,2] because I — i and ay = 4, and X is in C[2,4] because X — IS,
I€C[2,2],and S € C[3,4].

|I/x\ /\S
AT
Yyt

