
The Halting Problem is Undecidable

We define the language HALT to be the set of all strings of the form 〈M〉w such that M halts
with input w. HALT is the language which is equivalent to the halting problem.

Theorem 1 HALT is not decidable.

Proof: By contradiction. Suppose HALT is decidable. Let D be a machine which implements the
following program:

read a machine description 〈M〉.
if M halts with input 〈M〉
run forever.

else
halt.

We now run D with input 〈D〉. One of the following two cases must hold.

Case 1. D halts with input 〈D〉. That means that, when D reads 〈D〉, it runs forever, hence D
does not halt with input 〈D〉, contradiction.

Case 2. D does not halt with inpu 〈D〉. That means that, when D reads 〈D〉, it halts, hence D
halts with input 〈D〉, contradiction.

In either case, we obtain a contradiction, hence HALT is undecidable.

Theorem 2 HALT is recognizable.

Proof: The following program P recognizes HALT.

read 〈M〉w
run M with input w.
if M halts with input w
accept 〈M〉w.

Thus, P accepts every member of HALT, but no other string.

Note that the program will run forever if 〈M〉w /∈ HALT. HALT is recursively enumerable, since
every language recognized by a machine is recursively enumerable.

Theorem 3 Every recursively enumerable language is decidable.

Proof: Let L be a language enumerated by a machine M . Let w1, w2, . . . be the enumeration of
L given by M . For any n ≥ 0, let L[n] be the finite set of all members of L of length no greater
than n. Each member of L[n] must be wi for some i. Define T (n) = max(i : wi ∈ L[n]). The
following program decides L.

read w, let n = |w|
If(M writes w within time T (n+ 1)), ACCEPT w.
Else REJECT w.

Thus, HALT is decidable. But it’s undecidable! What’s wrong with this proof?

1

