The Halting Problem is Undecidable

We define the language HALT to be the set of all strings of the form $\langle M \rangle w$ such that M halts with input w. HALT is the language which is equivalent to the halting problem.

Theorem 1 HALT is not decidable.

Proof: By contradiction. Suppose HALT is decidable. Let D be a machine which implements the following program:

read a machine description $\langle M \rangle$. if M halts with input $\langle M \rangle$ run forever. else halt.

We now run D with input $\langle D \rangle$. One of the following two cases must hold.

Case 1. D halts with input $\langle D \rangle$. That means that, when D reads $\langle D \rangle$, it runs forever, hence D does not halt with input $\langle D \rangle$, contradiction.

Case 2. D does not halt with inpu $\langle D \rangle$. That means that, when D reads $\langle D \rangle$, it halts, hence D halts with input $\langle D \rangle$, contradiction.

In either case, we obtain a contradiction, hence HALT is undecidable.

Theorem 2 HALT is recognizable.

Proof: The following program *P* recognizes HALT.

read $\langle M \rangle w$ run M with input w. if M halts with input waccept $\langle M \rangle w$.

Thus, P accepts every member of HALT, but no other string.

Note that the program will run forever if $\langle M \rangle w \notin$ HALT. HALT is recursively enumerable, since every language recognized by a machine is recursively enumerable.

Theorem 3 Every recursively enumerable language is decidable.

Proof: Let L be a language enumerated by a machine M. Let w_1, w_2, \ldots be the enumeration of L given by M. For any $n \ge 0$, let L[n] be the finite set of all members of L of length no greater than n. Each member of L[n] must be w_i for some i. Define $T(n) = max(i : w_i \in L[n])$. The following program decides L.

read w, let n = |w|If(M writes w within time T(n + 1)), ACCEPT w. Else REJECT w.

Thus, HALT is decidable. But it's undecidable! What's wrong with this proof?