
Pumping Lemmas

The main usefulness of the two pumping lemmas is to prove that a particular language is not
regular, or context-free, as the case may be. Each lemma states that every language in the class
has a certain property, and thus if we can prove that a given language L does not have that
property, L is not in the class.

If w is a string and a is a symbol, we write #a(w) to be the number of instances of the symbol a
in the string w.

Lemma 1 (Pumping Lemma for Regular Languages) If L is a regular language, there ex-

ists a positive integer p, called the pumping length of L, such that for any string w ∈ L whose

length is at least p, there exist strings x, y, z such that the following conditions hold.

1. w = xyz

2. |y| ≥ 1

3. |xy| ≤ p

4. for any i ≥ 0, xyiz ∈ L.

Note that the the value of p is not unique: if p is a pumping length of L, so is every integer larger
than p. Every regular language has a minimum pumping length.

Lemma 2 A regular language accepted by an NFA with n states has pumping length n.

Lemma 1 follows from Lemma 2. Do you see why?

Try proving Lemma 2 before looking at the proof on the next page.

Example

Let L be the language of all base 2 numerals for multiples of 5, where leading zeros are not
allowed. The minimum number of states of any NFA which accepts L is six. Thus, by Lemma 2,
L has pumping length 6. For example, if w = 100011, which means 35, let x = 10, y = 001, and
z = 1. The first three conditions obviously hold. If we let i = 0, we get xz = 101, which means
5, while if i = 2 or i = 3, we get xy2z = 100010011 which means 275, or xy3z = 100010010011
which means 2115. The pumping length cannot be 4, since 1111, which means 15, does not have
a pumpable substring.

Question: Does L have Pumping Length 5?

1

Proof: (Of Lemma 2.) Suppose M is an NFA which accepts L, and let w ∈ L have length at least
n. An accepting computation of w has length |w|, hence must visit some state q of M at least
twice. That computation of w visits q after reading x, then visits q again after reading y, where
y is not empty, and finally visits a final state after reading z, where w = xyz. For any i ≥ 0, xyiz
has an accepting computation which visits q after reading x, then visits q i additional times while
reading yi, then visits a final state while reading z.

Lemma 3 (Pumping Lemma for Context-Free Languages) If L is a context-free language,

there exists a positive integer p, called the pumping length of L, such that for any string w ∈ L
whose length is at least p, there exist strings u, v, x, y, z such that the following conditions hold.

1. w = uvxyz

2. |v|+ |y| ≥ 1

3. |vxy| ≤ p

4. for any i ≥ 0, uvixyiz ∈ L.

Note that the the value of p is not unique: if p is a pumping length of L, so is every integer larger
than p. There is a minimum pumping length.

Example

Let L be the language consisting of all palindromes over {a, b}. A string w is a palindrome if
w = wR, the reversal of w. The following is an unambiguous grammar for L:

S− > aSa|bSb|a|b|λ

What is the minimum pumping length of L?

L has pumping length 3. If a palindrome w has even length, the substring aa or bb in the middle
of the string is pumpable. Without loss of generality, w = taatR for some string t. Without loss
of generality. Let u = t, v = a, x = λ, y = a, and z = tR. The first three conditions are obviously
satisfied. For any i ≥ 0, uvixyiz = uaiaiuR ∈ L.

If w has odd length, then there are four possibilities:
w = taaatR

w = tabatR

w = tbabtR

w = tbbbtR

In the first case, we let u = t, v = a, x = a, y = a, and z = tR. In the second case, we let u = t,
v = a, x = b, y = a, and z = tR. In each case, four conditions are satisfied. The other two cases
are similar.

Questions: Does L have pumping length 2? Does L have pumping length 1?

2

Using the Pumping Lemmas

Lemma 1 states a property that all regular languages have. Hence, if a language fails to satisfy
that property, it is not regular. Similarly, if language fails to satisfy the property given by Lemma
3, it is not context-free.

Let L1 = {anbn : n ≥ 0}, and let L2 = {anbncn : n ≥ 0}. We use Lemma 1 to prove L1 is not
regular, and Lemma 3 to prove L2 is not context-free.

Theorem 1 L1 is not regular.

Proof: By contradiction. We assume L1 is regular. Let p be a pumping length of L. (We
usually say, the pumping length, despite the fact that it is not unique.) Let w = apbp. Note that
|w| = 2p ≥ p, hence there exist strings x, y, z such that
1. w = xyz
2. |xy| ≤ p
3. |y| > 0
4. For any i ≥ 0, xyiz ∈ L1.

By 1. and 2., xy is a prefix of w of length no greater than p. Since the first p symbols of w are
a’s, that implies xy is a string of a’s, hence y is also a string of a’s. Write y = aj. By 3., j > 0.
Let i = 0. By 4., xy0z = xz ∈ L1. But xz = ap−jbp /∈ L1 since #a(xy 6= #b(xy), contradiction.

Theorem 2 L2 is not context-free.

Proof: By contradiction. We assume L2 is context-free. Let p be the pumping length of L. Let
w = apbpcp. Note that |w| = 3p ≥ p, hence there exist strings x, y, z, u, v such that
1. w = uvxyz
2. |vxy| ≤ p
3. |v|+ |y| > 0
4. For any i ≥ 0, uvixyiz ∈ L2.

Consider the frequency of each symbol in the substring vxy. We claim that either #a(vxy) = 0
or #c(vxy) = 0, since otherwise, vxy would contain some a and also some c in w, as well as all
the symbols in between, which would give it a length of at least p + 2. But, by 2., |vxy| ≤ p,
contradiction.

Now, without loss of generality, #a(vxy) = 0. Then uxz, which is a member of L by 4., by
choosing i = 0. Since #a(v) = #a(y) = 0, #a(uxz) = p. Each member of L has equal numbers
of each of the three symbols, thus |uxz| = 3p. Since |uvxyz| = 3p, we have |u| + |v| = 0, which
contradicts 3.

3

