CS 456/656 Study Guide for Examination October 23, 2024

A binary function is defined to be a function F on binary strings such that, for each binary string w, F(w) is a binary string. (Of course, the strings could be numerals.)

1. True or False. T = true, F = false, and O = open, meaning that the answer is not known science at this

time	
	Every subset of a regular language is regular.
	The class of context free languages is closed under union
	The class of context-free languages is closed under union.
	The class of context-free languages is closed under intersection.
	The language of binary numerals for multiples of 23 is regular.
(vi)	The set of binary numerals for prime numbers is in \mathcal{P} -TIME.
(vii)	Every language is countable.
(viii)	The set of languages over the binary alphabet is uncountable.
(ix)	The complement of any \mathcal{NP} language is \mathcal{NP} .
(x)	The complement of any decidable language is decidable.
(xi)	The complement of any undecidable language is undecidable.
(xii)	$\mathcal{P} = \mathcal{NP}.$
(xiii)	The complement of any \mathcal{P} -TIME language is \mathcal{P} -TIME.
(xiv)	The complement of any $\mathcal{P} ext{-SPACE}$ language is $\mathcal{P} ext{-SPACE}$.
(xv)	The complement of every recursive language is recursive.
(xvi)	The complement of every recursively enumerable language is recursively enumerable.
(xvii)	If a language L is accepted by an NFA M with p states, then L has pumping length p .
xviii)	Given any unambiguous context-free grammar G and any string $w \in L(G)$, there is always a unique leftmost derivation of w using G .
(xix)	For any deterministic finite automaton, there is always a unique minimal non-deterministic finite automaton equivalent to it.
(xx)	Let π be the ratio of the circumference of a circle to its diameter. Then π is recursive.
(xxi)	The Kleene closure of any recursive language is recursive.

- (xxii) _____ If $\mathcal{P} = \mathcal{NP}$, then all one-way encoding systems are breakable in polynomial time.
- (xxiii) _____ A language L is in \mathcal{NP} if and only if there is a polynomial time reduction of L to SAT.
- (xxiv) _____ The intersection of any context-free language with any regular language is context-free.
- (xxv) _____ Let L be the set of all strings of the form $\langle G_1 \rangle \langle G_2 \rangle$ where G_1 and G_2 are equivalent context-free grammars. Then L is recursively enumerable.
- (xxvi) _____ If L_1 reduces to L_2 in polynomial time, and if L_2 is \mathcal{NP} and L_1 is \mathcal{NP} -complete, then L_2 is \mathcal{NP} -complete.
- (xxvii) _____ The question of whether two regular expressions are equivalent is \mathcal{NP} -complete. (Do not guess. Look it up.)
- (xxviii) _____ Every language which is accepted by some non-deterministic machine is accepted by some deterministic machine.
- (xxix) _____ The language of all regular expressions over $\{a,b\}$ is a regular language.
- (xxx) _____ The equivalence problem for C++ programs is recursive.
- (xxxi) _____ Every function that can be mathematically defined is recursive.
- (xxxii) _____ A language is L is \mathcal{NP} if and only if there is a polynomial time reduction of L to Boolean satisfiability (SAT).
- (xxxiii) _____ If there is a recursive reduction of the halting problem to a language L, then L is undecidable.
- (xxxiv) _____ If there is a recursive reduction of a language L to the halting problem, then L is undecidable.
- (xxxv) _____ The set of rational numbers is countable.
- (xxxvi) _____ The set of real numbers is countable.
- (xxxvii) _____ The set of recursive real numbers is countable.
- (xxxviii) _____ There are countably many binary functions.
- (xxxix) _____ There are countably many recursive binary functions.
 - (xl) _____ The context-free grammar equivalence problem is $co-\mathcal{RE}$.
 - (xli) _____ Let $L = \{(G_1, G_2)\}$: G_1 and G_2 are not equivalent. Then L is recursively enumerable.
 - (xlii) _____ The factoring problem for unary numerals is \mathcal{P} -TIME
 - (xliii) ______ If L is a recursively enumerable language, there must be a machine which enumerates L in canonical order.
 - (xliv) _____ The set of all positive real numbers is countable.
 - (xlv) _____ f L is a context-free language over the unary alphabet, then L must be regular.

- (xlvi) _____ The union of any two undecidable languages is undecidable.
- (xlvii) ____ co- \mathcal{P} -TIME = \mathcal{P} -TIME
- 2. Give an unambiguous CFG which generates a language not accepted by any DPDA.
- 3. Suppose L is a problem such that you can check any suggested solution in polynomial time. Which one of these statements is certainly true?
 - (a) L is \mathcal{P} .
 - (b) L is \mathcal{NP} .
 - (c) L is \mathcal{NP} -complete.
- 4. Let L be the language of all binary strings where each 0 is followed by 1. Draw a DFA which accepts L.
- 5. Consider the NFA M pictured below. Construct a minimal DFA equivalent to M.

- 6. Let G_1 be the CF grammar given below. Prove that G_1 is ambiguous by giving two different parse trees for the string iiwaea.
 - 1. $S \rightarrow a$
 - 2. $S \rightarrow wS$
 - 3. $S \rightarrow iS$
 - 4. $S \rightarrow iSeS$
- 7. The CNF grammar G_2 , given below, is equivalent to the grammar G_1 given in Problem 6.

Use the CYK algorithm to prove that iiwaea is generated by G_2 .

8. Give a grammar, with at most 3 variables, for the language accepted by the following NFA.

9. Give a regular expression for the language accepted by the following NFA

- 10. Let L be the language consisting of all strings over $\{a,b\}$ which have equal numbers of each symbol. Give a CFG for L.
- 11. Design a DPDA which accepts the language described in Problem 10.

12. Give a context-free language whose complement is not context-free.

13. State the pumping lemma for regular languages.

14.	State the Church-Turing thesis. Why is it important?
15.	For a given instance of an \mathcal{NP} problem, a witness, a certificate, and a guide string all have the same purpose. Give the verification definition of an \mathcal{NP} language.
16.	Give a polynomial time reduction of the subset sum problem to the partition problem.

17.	Prove that every decidable language is can be enumerated by some machine in canonical order.
18.	Prove that every language which can be enumerated in canonical order by some machine is recursive
19.	Prove that every language which can be enumerated by any machine is accepted by some machine.
20.	Give a definition of a recursive real number. (There is more than one correct definition.)

21.	21. Which of these languages (problems) are known to be \mathcal{NP} -complete? If a language, or problem known to be \mathcal{NP} -complete, fill in the first circle. If it is either known not be be \mathcal{NP} -complete,				
	whet	her i	t is \mathcal{NP} -complete is not known at this time, fill in the second circle.		
	\bigcirc	\cap	Boolean satisfiability.		
	\circ	\bigcirc	2–SAT.		
	\circ	\circ	3–SAT.		
	0	0	Subset sum problem.		
	Ö	Ô	Traveling salesman problem.		
	Ö	Ö	Dominating set problem.		
	Ō	0	C++ program equivalence.		
		\circ	Partition.		
		\circ	Regular language membership problem.		
		\circ	Block sorting.		

23. Use the pumping lemma to prove that $L = \{a^nb^n \,:\, n \geq 0\}$ is not regular.

24. Prove, by induction, that $\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$. (For example, 1 + 2 + 4 + 8 = 16 - 1.)