
CS 456/656 Answers to Study Guide for Examination October 23,

2024

A binary function is defined to be a function F on binary strings such that, for each binary string w, F (w) is

a binary string. (Of course, the strings could be numerals.)

Complementation Theorem: A class of languages decided by a class of machines is closed under comple-

mentation. If a machine decides a language L, it can be made to decide its complement by swapping the two

outputs.

1. True or False. T = true, F = false, and O = open, meaning that the answer is not known science at this

time.

(i) F Every subset of a regular language is regular.

Any language over an alphabet Σ is a subset Σ∗, which is regular.

(ii) F The complement of a CFL is always a CFL.

L = {anbncn : n ≥ 0} is not CF, but it’s complement is.

(iii) T The class of context-free languages is closed under union.

If G1, G2 are CF grammers for L1 and L2, add a subscript 1 to variables of G1, and a subscript 2 to

variables of G2. Let G consist of all the productions of both grammars, together with S → S1 |S2.

Then L(G) = L1 ∪ L2.

(iv) F The class of context-free languages is closed under intersection. Let L1 = {anbncm |n,m ≥ 0}

and L2 = {anbmcm |n,m ≥ 0}, both CF. L1 ∩ L2 = {anbncn |n ≥ 0} , which is not CF.

(v) T The language of binary numerals for multiples of 23 is regular.

If leading zeros are allowed, you need 23 states in a DFA which decides the language. Otherwise,

you need 24. The set of numerals of any base, not just 2, for the members of any arithmetic sequence

is a regular language.

(vi) T The set of binary numerals for prime numbers is in P–time.

This is true for numerals of any base. This is a fact that was proven only recently, by Maninda

Agrawal, N. Kayal, and N. Saxena, and published in 2004, but I believe the result leaked out ealier.

Before then, the correct answer to this question would have been O. On the other hand, it is very

simple to write a polynomial time algorithm for primality of unary numerals.

(vii) T Every language is countable.

There are only countably many strings over any given alphabet.

(viii) T The set of languages over the binary alphabet is uncountable.

Let Σ be any alphabet. Then Σ∗ is the set of all strings over Σ, which is infinite and countable. But

Cantor proved that, for any set S, the set 2S has more elements than S. The set of all languages

over Σ is 2Σ
∗

, which is not countable, by Cantor’s diagonalization argument.

(ix) O The complement of any NP language is NP.

This is an important open problem. If P = NP, then co-NP = NP.

(x) T The complement of any decidable language is decidable.

By the complementation theorem.

(xi) T The complement of any undecidable language is undecidable. let L′ be the complement of L. If

L is undecidable and L′ is decidable, this violates the answer to the previous question.

(xii) O P = NP.

(xiii) T The complement of any P–time language is P-time.

By the complementation theorem.

(xiv) T The complement of any P–space language is P–space.

By the complementation theroem.

(xv) T The complement of every recursive language is recursive.

By the complementation theorem.

(xvi) F The complement of every recursively enumerable language is recursively enumerable.

The complement of any undecidable RE language, such as HALT, is co-RE , but not RE .

(xvii) T If a language L is accepted by an NFA M with p states, then L has pumping length p.

If w ∈ L, of length at least p, any computation of M of length at least p must have a cycle of length

between 1 and p. A substring of w starting and ending with visits to the same state is a pumpable

substring.

(xviii) T Given any unambiguous context-free grammar G and any string w ∈ L(G), there is always a

unique leftmost derivation of w using G.

One of the definitions of ambiguity is that some string has more than one leftmost derivation.

(xix) F For any deterministic finite automaton, there is always a unique minimal non-deterministic finite

automaton equivalent to it.

Trick question! It’s the converse which is true.

(xx) T Let π be the ratio of the circumference of a circle to its diameter. Then π is recursive.

There are known infinite series that converge to π. Given such a series and a number n, there is a

program which can compute the nth decimal digit of π, and there is a program that runs forever,

printing the decimal expansion. However, that program must have unbounded memory.

(xxi) T The Kleene closure of any recursive language is recursive.

Let L ⊆ Σ∗ be recursive, let M be a machine which decides L. and let w ∈ Σ∗ of length n. We can

use M , to decide which of the O(n2) substrings of w are members of L, and then we can quickly

determine whether w is the concatenation of some of those substrings.

2

(xxii) T If P = NP, then all one-way encoding systems are breakable in polynomial time.

If P = NP, there is no one-way function.

(xxiii) T A language L is in NP if and only if there is a polynomial time reduction of L to SAT.

Yes, by the definition of NP, since SAT is NP–complete.

(xxiv) T The intersection of any context-free language with any regular language is context-free.

I never explained this, but it’s not hard to understand how to attach a DFA which accepts a regular

language to the finite control of a PDA which accepts a CFL.

(xxv) F Let L be the set of all strings of the form 〈G1〉〈G2〉 where G1 and G2 are equivalent context-free

grammars. Then L is recursively enumerable.

But it is co-RE .

(xxvi) T If L1 reduces to L2 in polynomial time, and if L2 is NP and L1 is NP-complete, then L2 is

NP-complete.

This is the most common way that new NP–complete languages are found.

(xxvii) O The question of whether two regular expressions are equivalent is NP-complete. (Do not guess.

Look it up.)

Equivalence of regular expressions is P–space complete. It is unknown whether P–space = NP.

(xxviii) T Every language which is accepted by some non-deterministic machine is accepted by some deter-

ministic machine.

But it might take exponentially longer to accept a string.

(xxix) F The language of all regular expressions over {a, b} is a regular language.

This is a trick question! No language which has nested parentheses can be regular. The set of

regular expressions over any given alphabet is context-free, however.

(xxx) F The equivalence problem for C++ programs is recursive.

Programs are equivalent to machines, and machine equivalence is undecidable.

(xxxi) F Every function that can be mathematically defined is recursive.

This is somewhat hard to explain. The “busy beaver” function has a mathematical definition, but

is not recursive.

(xxxii) T A language is L is NP if and only if there is a polynomial time reduction of L to Boolean

satisfiability (SAT).

A basic property of NP–complete languages, in fact, one of the definitions, and SAT is NP–

complete.

3

(xxxiii) T If there is a recursive reduction of the halting problem to a language L, then L is undecidable.

If L1 can be reduced to L2 by an “easy” function then L2 cannot be “harder” than L1

(xxxiv) F If there is a recursive reduction of a language L to the halting problem, then L is undecidable.

The converse of the previous problem, but an easy language can be easily reduced to a hard language.

(xxxv) T The set of rational numbers is countable.

Every fraction can be thought of as the ordered pair (p,q) where p and q are integers. Since there

are countably many integers, there are countably many such pairs.

(xxxvi) F The set of real numbers is countable.

A famous diagonalization proof by George Cantor shows that there are uncountably many real

numbers.

(xxxvii) T The set of recursive real numbers is countable.

The decimal expansion of every recursive real number is written by some C++ program, and there

are only countably many C++ programs.

(xxxviii) F There are countably many binary functions.

Let Σ∗ be the set of all binary strings, which is countably infinite. The set of binary functions is

then (Σ∗)Σ
∗

, which is uncountable, by Cantor’s diagonalization proof.

(xxxix) T There are countably many recursive binary functions.

Each has to be computed by a C++ program, and there are countably many C++ programs.

(xl) T The context-free grammar equivalence problem is co-RE .

This follows immediately from the answer to the next question.

(xli) T Let L = {(G1, G2)} : G1 and G2 are not equivalent. Then L is recursively enumerable.

This is actually quite easy. Let L1 = L(G1) and L2 = L(G2). Let Σ1 and Σ2 be the terminals of

G1 and G2, respectively. Let w1, w2, . . . be an enumeration of (Σ1 ∩ (Σ2)
∗.

The following program recognizes L.

For(i = 1 . . .∞)

If wi ∈ L1 and wi /∈ L2 or wi ∈ L2 and wi /∈ L1

Accept and Halt.

(xlii) T The factoring problem for unary numerals is P–time

Yes, because the numeral 〈n〉 has n bits, and O(n) smaller numerals to check for being divisors of

n.

(xliii) F If L is a recursively enumerable language, there must be a machine which enumerates L in

canonical order.

That is only true for recursive (decidable) languages.

4

(xliv) F The set of all positive real numbers is countable.

(xlv) T If L is a context-free language over the unary alphabet, then L must be regular.

I have not given you a proof of this.

(xlvi) F The union of any two undecidable languages is undecidable.

Let L1 ⊆ Σ∗ be undeciable. and let L2 be the complement of L1. Then L2 is undecidable, but

L1 ∪ L2 = Σ∗, which is decidable.

(xlvii) T co-P–time = P–time

By the complementation theorem.

2. Give an unambiguous CFG which generates a language not accepted by any DPDA.

The folowing CFG generates all palindromes over {a, b}. No DPDA can accept this language, because

it would not be able to detect the middle of its input string.

S → aSa

S → bSb

S → a

S → b

S → λ

3. Suppose L is a problem such that you can check any suggested solution in polynomial time. Which one

of these statements is certainly true?

(a) L is P.

(b) L is NP.

(c) L is NP-complete.

Only the second one. But if P = NP and L is any infinite language, all three statements are true.

4. Let L be the language of all binary strings where each 0 is followed by 1. Draw a DFA which accepts L.

1

1

0
10

5. Consider the NFA M pictured below. Construct a minimal DFA equivalent to M .

0 0
b

aa b
1

2

λ

a,b

a
1/2/

12

b

5

6. Let G1 be the CF grammar given below. Prove that G1 is ambiguous by giving two different parse trees

for the string iiwaea.

1. S → a

2. S → wS

3. S → iS

4. S → iSeS
S

a

S

a

S

Si e S

aS

S

i S

i e S

a

S

iS

w

S

w

7. The CNF grammar G2, given below, is equivalent to the grammar G1 given in Problem 6.

Use the CYK algorithm to prove that iiwaea is generated by G2.

1. S → a

2. S → WS

3. W → w

4. S → IS

5. S → AB

6. A → IS

7. B → ES

8. E → e

9. I → i

I I W S E S

S

S

a e aii w

S

S

S

I

S

SE

I

S

S

i e a

SW

w

i

S

W S

w

E S

a

e a

I

i

SI

S

i

X Y

X Y
X

X

Y

X

8. Give a grammar, with at most 3 variables, for the language accepted by the follwing NFA.

q
0

q
2

q
1

a,b

a,c a,b,c S → aS|bS|aA|cA

A → aB|bB|cB

B → λ

You actually need only one variable. Do you see how?

S → aS | bS | aa | ab | ac | ca | cb | cc

9. Give a regular expression for the language accepted by the following NFA

1 2 3
a,b

b

a a

b

b

(a+ b)(b(a+ b) + a+ ba∗b)∗

10. Let L be the language consisting of all strings over {a, b} which have equal numbers of each symbol.

Give a CFG for L.

6

The grammar below is ambiguous, but there is an equivalent unambigous CFG.

S → aSbS

S → bSaS

S → λ

11. Design a DPDA which accepts the language described in Problem 10.

0

a/b/λ
λb/a/

$/z/λ

a/z/az
b/z/bz
a/a/aa
b/b/bb

1

12. Give a context-free language whose complement is not context-free.

the complement of the language Let L = {anbncn : n ≥ 0}. L is not context free, but its complement is

context-free.

13. State the pumping lemma for regular languages.

For any regular langage L

There exists an integer p

Such that for any string w ∈ L of length at least p

There exist strings x, y, and z

Such that the following statements hold

1. w = xyz

2. |xy| ≤ p

3. y 6= λ (or |y| ≥ 1)

4. For any integer i ≥ 0, xyiz ∈ L.

14. State the Church-Turing thesis. Why is it important?

Every computation by any machine can be emulated by some Turing machine. This is important because

Turing machines are simple, making it easier to prove that a given computation cannot be done by a

Turing machine, hence not by any machine.

15. For a given instance of an NP problem, a witness , a certificate, and a guide string all have the same

purpose. Give the verification definition of an NP language.

Let L be any NP language. There exists a machine V (the verifier) and there exists an integer k such

that

(a) For any w ∈ L of length n there is a string c of length O(nk), such that V accepts the string w, c

in O(nk time

(b) If w /∈ L and c is any string, V does not accept w, c.

7

The string c could be called either a “certificate” (certifying that w ∈ L) or a “witness.”

Alternatively, if L is accepted by a non-deterministic machine M is polynomial time, then a guide string

for w ∈ L is a string of instructions which tells M , with input w, what to do at each step where there is

a choice, in order to reach a final state.

In all three cases, we mean a string of polynomial length which allows a machine to verify that w ∈ L.

For example, for a satisfiable Boolean expression, a witness would be an assignment of the variables

which satisfies the expression.

16. Give a polynomial time reduction of the subset sum problem to the partition problem.

If X = (x1, x2, . . . xn,K) is an instance of the subset sum problem, let S =
∑n

i=1
xi. Then

Y = (x1, x2, . . . xn,K + 1, S −K + 1) is an instance of the partition problem which has a solution if and

only if X has a solution.

17. Prove that every decidable language is can be enumerated by some machine in canonical order.

Let w1, w2, . . . be the canonical enumeration of Σ∗. The following program enumerates a deciable language

L ⊆ Σ∗ in canonical order:

For each i from 1 to ∞

If(wi ∈ L)

write wi

It is important that L be decidable, else the program might never get past the if statement, being unable

to decide the condition.

18. Prove that every language which can be enumerated in canonical order by some machine is recursive.

If L is finite, we are done, since a finite language is recursive.

Otherwise, suppose some machine enumerates L in canonical order: w1, w2, The following program

decides L.

Read w.

For i = 1 to ∞

If(w = wi)

Write ”Yes” and halt

else if (w < wi) (in canonical order)

Write ”No” and halt

19. Prove that every language which can be enumerated by any machine is accepted by some machine.

Suppose some machine enumerates L as w1, w2, . . ., not necessarily in canonical order. The following

program accepts L.

Read w

For i = 1 to ∞

8

If(w = wi)

Write “Yes” and halt.

20. Give a definition of a recursive real number. (There is more than one correct definition.)

Here are some of the definitions.

(a) x ∈ IR is recursive means that there is a machine that writes the decimal expansion of x.

(b) x ∈ IR is recursive means that the function D, where D(n) is the nth digit of the decimal expansion

of x, is recursive.

(c) x ∈ IR is recursive means that, for any fracton y, the question of whether x < y is decidable.

21. Which of these languages (problems) are known to be NP-complete? If a language, or problem, is

known to be NP-complete, fill in the first circle. If it is either known not be be NP-complete, or if

whether it is NP-complete is not known at this time, fill in the second circle.

⊗
© Boolean satisfiability.

©
⊗

2–SAT.⊗
© 3–SAT.⊗
© Subset sum problem.⊗
© Traveling salesman problem.⊗
© Dominating set problem.

©
⊗

C++ program equivalence.⊗
© Partition.

©
⊗

Regular language membership problem.⊗
© Block sorting.

22. Give a polynomial time reduction of 3-SAT to the independent set problem.

Let E = C1 ∗C2 ∗ · · ·Ck be Boolean expression in 3–CNF form For any i, let Ci = ti,1 + ti,2 + ti,3 where

each ti,p is either a variable or the negation of a variagle. Let G be the graph with 3k vertices {vi,j}

each labeled with one term of E. Let there be an edge from vi,p to vj,q if either i = j or ti,p ∗ tj,q is a

contradiction. Then E is satisfiable if and only if G has an independent set of order k.

We illustrate an example, where E = (x+ y + z) ∗ (!x+!y + w) ∗ (y+!z+!w) ∗ (!y + z+!w).

9

The graph G, with 3k = 12 ver-

tices, is shown, where vertices of

a 4–independent set are circled in

red. The corresponding term in

each clause is underlined in red.

The corresponding assignment of

the variables of E is

(a) x = false

(b) y = true

(c) w = false

The remaining variable z can be

assigned either true or false. We

default to false.

y

!w

!w

!y

!y
y

!z

z

x !x

w

z

(x+y+z) (!x+!y+w) (y+!z+!w) (!y+z+!w)

C1 C2

K 3

K 2

K 4

K 1

C3 C4

23. Use the pumping lemma to prove that L = {anbn : n ≥ 0} is not regular.

By contradiction: assume that L is regular. Let p be the pumping length of L. Let w = apbp, which is

a member of L and has length 2p ≥ p. Thus, there must exist string x, y, z such that the following four

statements hold:

1. w = xyz

2. |xy| ≤ p

3. y 6= λ (or |y| ≥ 1)

4. For any integer i ≥ 0, xyiz ∈ L.

By statement 1., xyz = w, hence the string xy is a prefix of w. By statement 2., |xy| ≤ p, hence it must

lie in the first p symbols of w, and hence xy must consist entirely of a’s, which implies that y consists

entirely of a’s, hence y = ak for some k. By statement 3., y is not the empty string, hence k ≥ 1. By

condition 4, picking i = 2, we have xy2z ∈ L. But that string is obtained by inserting y into w, which

means that xy2z has p+ k a’s and only p b’s, which implies that it is not a member of L, contradiction.

We conclude that L cannot be regular.

24. Prove, by induction, that
∑n

i=0
2i = 2n+1 − 1. (For example, 1 + 2 + 4 + 8 = 16− 1.)

For n = 1, the formula states that 1+2 = 4−3, which is true. We now prove the inductive step. Assume

the formula holds for n; we need to prove it for n+ 1. We have

n+1∑

i=0

2i =

n∑

i=0

2i + 2n+1

= 2n+1 − 1 + 2n+1

= 2 · 2n+1 − 1

= 2n+2 − 1

and we are done.

10

