CSC 456/656 Fall 2024 Answers to Second Examination October 23, 2024

The entire exam is 270 points.

In the questions of this test, \mathcal{P} and \mathcal{NP} denote \mathcal{P} -TIME and \mathcal{NP} -TIME, respectively. If L is a language over an alphabet Σ , we define the *complement* of L to be the set of all strings over Σ which are not in L. If \mathcal{C} is a class of languages, we define co- \mathcal{C} to be the class of all complements of members of \mathcal{C} .

- 1. True or False. 5 points each. T = true, F = false, and O = open, meaning that the answer is not known science at this time.
 - (i) **F** The complement of a CFL is always a CFL.
 - (ii) **F** The class of context-free languages is closed under intersection.
 - (iii) **T** The language of binary numerals for multiples of 23 is regular.
 - (iv) **T** The set of binary numerals for prime numbers is in \mathcal{P} -TIME.
 - (v) **O** The complement of any \mathcal{NP} language is \mathcal{NP} .
 - (vi) **T** The complement of any undecidable language is undecidable.
 - (vii) **O** $\mathcal{NP} = \mathcal{P}$ -space.
 - (viii) **T** The complement of any \mathcal{P} -TIME language is \mathcal{P} -TIME.
 - (ix) **T** The complement of any \mathcal{P} -SPACE language is \mathcal{P} -SPACE.
 - (x) \mathbf{F} The complement of every recursively enumerable language is recursively enumerable.
 - (xi) **T** π is recursive.
 - (xii) **T** If $\mathcal{P} = \mathcal{NP}$, then all one-way encoding systems are breakable in polynomial time.
 - (xiii) **T** A language L is in \mathcal{NP} if and only if there is a polynomial time reduction of L to SAT.
 - (xiv) **T** If L_1 reduces to L_2 in polynomial time, and if L_2 is \mathcal{NP} and L_1 is \mathcal{NP} -complete, then L_2 is \mathcal{NP} -complete.
 - (xv) **O** The question of whether two regular expressions are equivalent is \mathcal{NP} -complete.
 - (xvi) \mathbf{T} Every language which is accepted by some non-deterministic machine is accepted by some deterministic machine.
 - (xvii) **F** The language of all regular expressions over $\{a, b\}$ is a regular language.

- (xviii) \mathbf{F} The equivalence problem for C++ programs is recursive.
- (xix) \mathbf{F} Every function that can be mathematically defined is recursive.
- (xx) This problem is a duplicate.
- (xxi) **T** If there is a recursive reduction of the halting problem to a language L, then L is undecidable.
- (xxii) **F** If there is a recursive reduction of a language L to the halting problem, then L is undecidable.
- (xxiii) \mathbf{T} The set of rational numbers is countable.
- (xxiv) \mathbf{F} The set of real numbers is countable.
- (xxv) **T** The set of recursive real numbers is countable.
- (xxvi) **T** There are countably many recursive binary functions.
- (xxvii) T The context-free grammar equivalence problem is $co-\mathcal{RE}$.
- (xxviii) **T** Let $L = \{ \langle G_1 \rangle, \langle G_2 \rangle : L(G_1) \neq L(G_2) \}$ Then L is recursively enumerable.
- (xxix) **T** The factoring problem for unary numerals is \mathcal{P} -TIME
- (xxx) **T** co- \mathcal{P} -TIME = \mathcal{P} -TIME
- (xxxi) **T** If L is an \mathcal{RE} (recursively enumerable) language, there is a program that accepts L.
- 2. [20 points] Let L be the language generated by the Chomsky Normal Form (CNF) grammar given below. Use the CYK algorithm to prove that the string *iwiaea* is a member of L. Use the figure below for your work.

3. [20 points] State the pumping lemma for regular languages.

If L is a regular language There exists a positive number p such that For any $w \in L$ of length at least p There exist string x, y, z such that the following hold

- 1. w = xyz
- 2. $|xy| \le p$
- 3. $|y| \ge 1$
- 4. For any integer $i \ge 0$ $xy^i z \in L$
- 4. [20 points] Let $L = \{w \in \{a, b\}^* : \#_a(w) = \#_b(w)\}$, all strings over $\{a, b\}$ which have equal numbers of *a*'s and *b*'s. Use the pumping lemma to prove that *L* is not regular.

Theorem 1 L is not regular.

Proof: By contradiction. Assume L is regular. Let p be the pumping length of L. Let $w = a^p b^p \in L$, which has length greater than p. By the pumping lemma, there exist strings x, y, z such that

- 1. w = xyz
- 2. $|xy| \leq p$
- 3. y is not the empty string
- 4. For any $i \ge 0$ $xy^i z \in L$

By 1. xy is a prefix of w. By 2., xy is a substring of a^p . By 3. $y = a^k$ for some k > 0, hence $xy^0z = xz = a^{p-k}b^k \in L$, which is a contradiction to the requirement that each string in L has equally many of each symbol. We conclude that L is not regular.

5. [20 points] Give a polynomial time reduction of the subset sum problem to partition.

Let $X = (x_1, x_2, \dots, x_n, K)$ be an instance of the subset sum problem. Let $S = \sum_{i=1}^n x_i$. We assume $K \leq X$, since otherwise the instance has no solution. Let $Y = (x_1, x_2, \dots, x_n, K + 1, S - K + 1)$, an instance of the partition problem. Then Y has a solution if and only if X has a solution.

6. [20 points] Give a polynomial time reduction of 3-SAT to the Independent Set problem.

Let $E = C_1 \cdot C_2 \cdot \cdots \cdot C_k$ be a Boolean expression in 3-CNF form. For each i, let C_i be the disjunction of three terms, $t_{i,1} + t_{i,2} + t_{i,3}$ where each $t_{i,j}$ is either a variable or the negation of a variable. Let G be the graph with 3k vertices, $\{v_{i,j}\}$ each corresponding to a term of E. We let G have an edge from $v_{i,j}$ to $v_{p,q}$ if either i = p or the expression $t_{i,j} \cdot t_{p,q}$ is a contradiction, that is, one of those terms is a variable and the other the negation of that variable. Then E has a satisfying assignment if and only if G has an independent set of size k.

7. [20 points] Prove that $\sqrt{2}$ is irrational.

Theorem 2 $\sqrt{2}$ is irrational.

Proof: By contradiction. Assume $\sqrt{2}$ is rational. Then $\sqrt{2}$ is can be written as a fraction $\frac{p}{q}$, where p and q are integers with no common divisor greater than 1. Then

 $\begin{array}{l} \sqrt{2} = \frac{p}{q} \\ 2 = \frac{p^2}{q^2} \\ 2q^2 = p^2 \\ \text{Hence } p^2 \text{ is even} \\ \text{Hence } p \text{ is even} \\ \text{Write } p = 2k \text{ where } k \text{ is an integer} \\ p^2 = 4k^2 \\ 2q^2 = 4k^2 \\ q^2 = 2k^2 \\ \text{Hence } q^2 \text{ is even} \\ \text{Hence } q^2 \text{ is even} \\ \text{Hence } q \text{ is even.} \\ p \text{ and } q \text{ have a common divisor } 2 \\ \text{Contradiction. Therefore, } \sqrt{2} \text{ is not rational. } \blacksquare \end{array}$