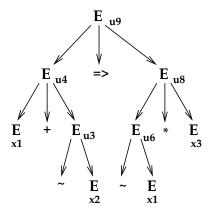
Completing the Lecture of November 30, 2016


The notation I used during this semester (Fall 2016) differs slightly from the notation in the \mathcal{NP} document, but not so much that you should be confused by it.

The problem was to show a reduction of SAT to 3SAT. In the \mathcal{NP} document I refer to 3SAT $L_{3\text{cnf-sat}}$. That reduction R is completely explained in the \mathcal{NP} document. However, I did not finish with the one example I had on the board on November 30.

That was to give R(e), where:

$$e \equiv (x1 + \sim x2) \Rightarrow \sim x1 * x3$$

The parse tree for e, using an ambiguous version of context-free grammar given in the \mathcal{NP} handout:

Our next step is to translate the parse tree into the conjunction of clauses:

$$(u4 = x1 + u3) * (u3 = \sim x2) * (u6 = \sim x1) * (u8 = u6 * x3) * (u9 = u4 \Rightarrow u8) * u9$$

Finally, we translate into 3-CNF form by replacing each of those clauses by the conjunction of CNF clauses of at most three terms:

$$(u4+\sim x1)*(u4+\sim u3)*(\sim u4+x1+u3)* \\ (u3+x2)*(\sim u3+\sim x2)* \\ (u6+x1)*(\sim u6+\sim x1)* \\ (u8+\sim u6+\sim x3)*(\sim u8+u6)*(\sim u8+x3)* \\ (u9+u4)*(u9+\sim u8)*(\sim u9+\sim u4+u8)* \\ u9$$

We can then "pad" each clause of length less than three by duplicating terms, so that each clause has exactly three terms. For example, we can replace $(u4+\sim x1)$ with $(u4+u4+\sim x1)$, and u9 with (u9+u9+u9).