
This version Thu Apr 24 15:27:46 PDT 2014

P And NP

Throughout, if we say “machine” we mean deterministic machine, unless we specially say
“non-deterministic.”

For a definition of the classes P-TIME and NP-TIME, usually abbreviated as simply
P and NP, respectively, read the file

http://www.egr.unlv.edu/~larmore/Courses/CSC456/NP/npcomplete.html

(There are, of course, many other discussions of this topic on the web.)

Recall that a language L is in P if and only if there is some machine that accepts L

in polynomial time, and that a language L is in NP if and only if there is some non-
deterministic machine that accepts L in polynomial time.

Theorem 1 A language L is in P if and only if there is some machine that decides L in

polynomial time.

Proof: The “if” part is trivial, so we only need to prove the “only if” part. There exists
a polynomial function F (n), a machine M1 that accepts L in F (n) time, and a machine M2

that computes F in polynomial time. We design a program that decides L in polynomial
time, as follows:

1. Input a string w.

2. Let n = |w|.

3. Use M2 to compute T = F (n).

4. Emulate M1 with input w until either it accepts w, rejects w, hangs, or executes T +1
steps.

5. If the result of the previous step is acceptance, output 1, else output 0.

The program clearly takes polynomial time. It decides L because if M1 does not accept w
in T steps, it never will. ✷

Definition 1 We say that a language L is NP-complete if the following two conditions
are satisfied:

1. L ∈ NP

2. For any L2 ∈ NP, there exists a polynomial time reduction of L2 to L.

Theorem 2 If L1 is NP-complete, L ∈ NP, and there is a polynomial time reduction of

L1 to L, then L is NP-complete.

1

Proof: Condition 1 of the definition is given. To prove Condition 2, let L2 ∈ NP. Since
L1 is NP-complete, there is a polynomial time reduction of L2 to L1. By hypothesis, there
is a polynomial time reduction of L1 to L. Composing these two reductions, we obtain a
polynomial time reduction of L2 to L. ✷

Theorem 3 If L ∈ P and L is NP-complete, then P = NP.

Proof: Trivially, P ⊆ NP. We need only show that any L2 ∈ NP is in P.
Suppose that L2 ∈ NP. Since L ∈ P, there is a machine M1 that decides L in

polynomial time. Since L is NP-complete, there is a polynomial time reduction of L2 to
L, computed by some machine M2. Connecting the input of M1 with the output of M2, we
obtain a machine that decides L2 in polynomial time. Thus, L2 ∈ P. ✷

Certificates

Given an NP language L, we define a certificate system of L as follows:

1. There is a language LC , which we call the certificate language.

2. Let “♯” be some symbol which is not in the alphabet of either L or LC . There is a
language LV ⊂ LC♯L, called the verification language, such that w ∈ L if and only
if there is some x ∈ LC such that x♯w ∈ LV . We call x a certificate of w, because it
certifies that w ∈ L.

We define an NP certificate system of L to be a certificate system of L which has the
following additional properties:

3. There is a polynomial function F (n) such that, for any w ∈ L such that |w| = n,
there is a certificate of w of length at most F (n).

4. The verification language LV is in P.

We define an P certificate system of L to be a NP certificate system of L which has
the following additional property:

5. There is a machine M which computes some x ∈ LC in polynomial time for any input
string w, such that x is a certificate for w if w ∈ L.

Theorem 4 A language L is in NP if and only if it has an NP certificate system.

We first need a definition.

Definition 2 Let M be an NTM. A configuration of M is defined to be a string which
encodes the state of M , the tape contents of M , and the position of the read/write head
of M . The details do not really matter, but we can use the definition given on page 129 of
our textbook, Introduction to the Theory of Computation by Michael Sipser.

2

If x and y are configurations of M , we say that x yields y, which we denote x ⊢ y, if,
given that x is the configuration of M after t steps, y could be the configuration of M after
t+ 1 steps.1

Without loss of generality, the symbol “⊢” is not a symbol of the tape alphabet of
M , nor the name of a state of M . We define a valid computation of M to be a string
x0 ⊢ x1 ⊢ . . . ⊢ xn such that each xi is a configuration of M , x0 is a start configuration of
M , xn is an accepting configuration of M , and xt−1 ⊢ xt for each t. In addition, we say
that this sequence is a valid computation of M with input w if x0 is the start configuration
of M on input w. The time complexity of the computation is defined to be n.

For convenience in our proofs, we shall say that x ⊢ x for any configuration x.

Note that, the way we have defined it, a valid computation is a string, differing slightly
from the definition given at the bottom of page 129 of the textbook.

Proof: (of Theorem 6) Suppose that L is a language which has anNP certificate system.
We can design a non-deterministic program that accepts L as follows. First guess x ∈ LC

in F (n) steps. Then verify that x♯w ∈ LV in polynomial time.
Conversely, suppose that L ∈ NP. Let M be an NTM which accepts L in F (n)

time, where F (n) is some polynomial time function. Let LC be the language of all valid
computations of M . We say that x ∈ LC is a certificate of w ∈ L if x is a valid computation
of time complexity F (n) of M with input w, where n = |w|. Note that the length of x is
O(F (n) · (F (n) + n), since the space complexity of a valid computation cannot exceed its
time complexity, plus the size of the input. Thus, the length of x is a polynomial function
of n. Clearly, w has a certificate in LC if and only if w ∈ L, and there is a polynomial
time algorithm that verifies that x is a certificate of w, simply by checking that x is a valid
computation of M with input w. Thus, we have constructed an NP certificate system for
L.

This completes the proof of Theorem 4. ✷

Theorem 5 A language L is in P if and only if it has a P certificate system.

Proof: Suppose that L has a P certificate system. If w ∈ Σ∗, where Σ is the alphabet
of L, use M to compute x ∈ LC is polynomial time. If w ∈ L, then it can be verified that
x♯w ∈ LV is polynomial time.

Conversely, suppose L ∈ P. Let LC = {1}, a language with just one string. We say that
1 is a certificate of every w ∈ L. Trivially, that certificate can be computed in polynomial
time. Since L ∈ P, the language LV = {1♯w | w ∈ L} is in P. ✷

Boolean Satisfiability

Generally, we define a Boolean expression to be an expression involving variables and op-
erators, where all variables have Boolean type and all operators have Boolean type.2 A
satisfying assignment of a Boolean expression is an assignment of truth values (there are

1Of course, if M is deterministic, for any x there can be at most one choice of y.
2This definition is much more restrictive than the definition of a Boolean expression in a programming

language, which could contain other things, such as the C++ expression “n == 5” where n is a variable of

integer type.

3

only two truth values, true and false) to each variable so that the value of the expression
is true. If a Boolean expression has a satisfying assignment, we say it is satisfiable; other-
wise, we say it is a contradiction. The Boolean satisfiability problem is to determine that
a given boolean expression is satisfiable. This problem is NP-complete, and in fact is our
“base” NP-complete problem, the one we shall use to determine that other problems are
NP-complete.

Formal Definition of Boolean Satisfiability

We first define a context-free language Lbool to consist of all boolean expressions using the
following rules:

1. All variables are written in alphanumeric style, i.e., are strings containing letters and
digits and starting with a letter.

2. The only operators permitted are

(a) “+” denoting or.

(b) “·” denoting and.

(c) “∼” denoting not.

(d) “=” denoting if and only if.

(e) “⇒” denoting implies.

We apply the following precedence rules:

(a) “∼” has precedence over all other operators.

(b) “·” has precedence over all operators except “∼”

(c) “+” has precedence over all operators except “∼” and “·”

(d) “=” and “⇒” have equal precedence and cannot associate, to avoid confusion.
That is, a = b = c, a ⇒ b ⇒ c, a = b ⇒ c, and a ⇒ b = c are disallowed.

It is an easy exercise to design a context-free grammar for Lbool, using the alphabet consist-
ing of the operator symbols listed above, letters and digits, and right and left parentheses.3

Certificates for Lsat A certificate for any w ∈ Lsat is a satisfying assignment. For
example, x = 1, y = 0 is a certificate for the boolean expression (x+ y) · (∼ x+ ∼ y), while
the boolean expression (x+ ∼ x) has no certificate. Since a certificate for any w ∈ L is no
longer than w itself, and since it can be verified in linear time, we have an NP certificate
system for Lsat.

3In class, I did not list the operators “=” and “⇒” but I have decided that including these operators

makes the later discussion easier.

4

Conjunctive normal form. We say that w ∈ Lbool is in conjunctive normal form

(abbreviated CNF) if it is the conjunction of clauses, where each clause is the disjunction
of terms, and each term is either a variable or the negation of a variable.

Definition 3

1. Lsat is the subset of Lbool consisting of all satisfiable boolean expressions.

2. L3cnf is the subset of Lbool consisting of all boolean expressions in conjunctive normal

form where each clause has exactly three terms.

3. L3cnf-sat = L3cnf ∩ Lsat.

We give context-free grammars for both Lbool and L3cnf in the appendix.

Theorem 6 Lsat is NP-complete.

We define a simple clause of a boolean expression to be a boolean expression of one of
the following three forms:

1. (v) for some variable v

2. (∼ v) for some variable v

3. (u = v) for some variables u, v

If M is an NTM, then a configuration of M is a string of the form xqy, where x and y

are strings of tape symbols (including the symbol which represents blank) and q is a state.
We can “pad” a configuration, making it longer, by adding as many additional blanks as
we wish to y.

A configuration can then be translated into a string over the boolean alphabet Σ =
{0, 1}, by fixing binary encodings of the tape symbols and states. It is important for our
purposes that there is some fixed k such that each tape symbol and each state is encoded
by exactly k binary symbols.

A string of binary symbols of length n can then be thought of as an ordered n-tuple of
truth values, where 0 represents false and 1 represents true. If v[1..n] is an array of type
boolean, we can think of a string of binary symbols of length n as an assignment of that
array, where v[i] is assigned the truth value corresponding to the ith symbol of the string.

If x, y are binary encodings of configurations of M of the same length, say n, (which can
always be made true by padding) then the statement that x yields y, written x ⊢ y, is then a
function of boolean type with 2n boolean parameters, which we call yields(x[1],...x[kn],y[1],
...y[kn]), or simply yields(x,y). For any fixed n, you could write that function using
a single statement in the body, which would be a return statement where the right hand
side is a boolean expression with 2n variables. (You probably wouldn’t do it that way, but
you could.)

If a configuration is of the form aqb where a, b are tape symbols (including possibly the
blank symbol) and q ∈ Q, we say that it is a window configuration. We also say that qb is
a window configuration. (We need this case to handle the situations where the head is on
the rightmost cell.)

5

Lemma 1 For any one transition rule of M , there is a boolean function W with 6k boolean

parameters such that W (x[1], . . . x[3k], y[1], . . . y[3k]) has the value true if and only if x is

a 3-symbol window configuration of M and x ⊢ y, where that one transition rule is used to

derive y from x. Further, W is the conjunction of no more than 5k simple clauses.

Proof: The tape head is over the cell that contains b, and the state is q. If the transition
rule is to write c, move right, and change to state r, then the boolean function W will be
designed to be true if and only if there is some a such that x = aqb and y = acr.

If the transition rule is to write c, move left, and change to state r, then the boolean
function W will be designed to be true if and only if there is some a such that x = aqb and
y = rac.

In either case, W is the conjunction of 5k simple clauses, and has 6k terms. ✷

Lemma 2 For any one transition rule of M which causes a right movement of the head,

there is a boolean function W with 4k boolean parameters such that W (x[1], . . . x[2k], y[1], . . . y[2k])
has the value true if and only if x is a 2-symbol window configuration of M and x ⊢ y, where

that one transition rule is used to derive y from x. Further, W is the conjunction of no

more than 4k simple clauses.

We omit the proof of Lemma 2, which is similar to that of Lemma 1.

Lemma 3 If M has R transition rules, there is a boolean function W with 6k boolean

parameters such that W (x[1], . . . x[3k], y[1], . . . x[3k]) has the value true if and only if x is

a window configuration of M and x ⊢ y. Further, W has no more than 6k(R+ 1) terms.

Proof: Let W1, . . .WR be the boolean functions given by Lemma 1 for each rule. Let
W0 be the boolean function that says that x = y, namely (x[1] = y[1]) · (x[2] = y[2]) · · · · ·
(x[3k] = y[3k]). Now let W = W0 +W1 + · · ·+WR. ✷

Lemma 4 If M has R transition rules, there is a boolean function W with 4k boolean

parameters such that W (x[1], . . . x[2k], y[1], . . . x[2k]) has the value true if and only if x is

a window configuration of M and x ⊢ y. Further, W has no more than 4k(R+ 1) terms.

We omit the proof of Lemma 4, which is similar to that of Lemma 3.

Lemma 5 For each n, there is a boolean function e(x1, . . . xkn, y1, . . . ykn) where, if x, y are

binary encodings of configurations of M of the same length n, e(x[1], . . . x[kn], y[1], . . . y[kn])
is true if and only if x ⊢ y, and if the last symbol of x is not a state symbol. Furthermore,

the function e can be written as a boolean expression whose number of terms is polynomial

in n.

Proof: For each 1 < i < n, let wx
i be the substring of x consisting of the three symbols in

positions i−1 through i+1. Let e be the boolean function given by Lemma Lemma 3. Then
define ei(x[1], . . . x[kn], y[1], . . . y[kn]) to be the function ((x[1] = y[1]) · · · · · (x[ki− 2k] =
y[ki− 2k])) · e(x[ki− 2k + 1], . . . x[ki+ k], y[ki− 2k + 1], . . . , y[ki+ k]) · ((x[ki− 2k + 1] =
y[ki− 2k+1]) · · · · · (x[kn] = y[kn])) which is true if and only if x is a configuration of M ,
x ⊢ y, and x has a state symbol in position i. Similarly, using Lemma ??, we can define a

6

function e1(x[1], . . . x[kn], y[1], . . . y[kn]) which is true if and only if x is a configuration of
M , x ⊢ y, and x has a state symbol in position 1. By construction, we can see that each
ei can be written as a boolean expression whose number of terms is polynomial in n. We
now define e = e1 + e2 + · · ·+ en−1. ✷

Proof: (of Theorem 6.) Our method is to show that, for any NTMM , for any polynomial
function F , and for every string w, where we write n = |w|, there is a boolean expression
E = EM,w,F whose length is O(F (n)3 log(F (n))), and which is satisfiable if and only if M
accepts w in F (n) time. Furthermore, EM,w,F can be calculated, given input w, in G(n)
time for some polynomial function G. Our method will be that E is satisfiable if and only
if there is a valid computation of M of length at most F (n) which starts with the initial
configuration of M with input w.

We can assume that each configuration has length exactly F (n) + 2, no configuration
in a valid computation than the length of the computation plus 2, and we can “pad” any
shorter configuration by adding blanks. Pick a constant k such that 2k is at least the sum
of the number of states of M and the size of the tape alphabet of M , including the blank
symbol. Then, encode all states and tape symbols, including blank, as unique binary strings
of length k. Let N = k(F (n) + 2). We can thus represent every configuration of M that
could be used in our proof as a binary string of length N .

Write T = F (n). We can assume that a valid computation of at most length T has langth
exactly T , and thus exactly T + 1 configurations, by repeating the accepting configuration
as many times as necessary.

A binary string of length N can be considered to be an array of length N of boolean
type, i.e., an array of N boolean variables. E will have exactly N(T +1) distinct variables,
where the variable {vt,i} represents the ith bit of the configuration xt.

There is then a one-to-one correspondence between assignments of these variables, and
strings of the form x0 ⊢ x1 ⊢ · · · ⊢ xT , where each xt is a boolean string of length N . The
boolean expression E will be designed in such a way that a particular assignment of its
variables is satisfying if and only if the corresponding string is a valid computation of M
with input w.

✷

Theorem 7 L3cnf-sat is NP-complete.

Proof: We will use Theorems 2 and 6.
It is trivial that L3cnf-sat ∈ NP, since a satisfying assignment of any w ∈ L3cnf-sat can

be verified in linear time. We now give a polynomial time reduction of Lsat to L3cnf-sat.
We will use the context-free grammar for Lbool given in the appendix. Let Σ be the
alphabet of Lbool. For any w ∈ Lbool, we will construct a string F (w) ∈ L3cnf such that
w ∈ Lsat if and only if F (w) ∈ L3cnf-sat, and such that F can be computed in polynomial
time.

To use Theorem 2, we need to compute F (w) for all w ∈ Σ∗. If w 6∈ Lbool, we define
F (w) = ǫ. Since Lbool is a context-free language, this part of the program can be done in
polynomial time.

Henceforth, we assume that w ∈ Lbool. Let T be a parse tree for w, using the grammar
given in the appendix. If N is any internal node of the parse tree, we write leaves(N) ∈ Σ∗

7

to be the string of all the terminals in the subtree rooted at N , in left-to-right order. Thus,
for example, if N is the root of T , then leaves(N) = w.

We first assign a unique name to each internal node of T , which will be a subscripted
grammar symbol. For example, the nodes whose grammar symbol is S will be given the
names S1, S2, . . . and so forth. We can assume that S1 is the root node of T .

Each internal node whose grammar symbol is S, E, T , or F , corresponds to a derivation
where the variable grammar symbols have subscripts. For example, the internal node E5

might correspond to the subscripted derivation E5 → E6 + T9.
We then assign a string variable(N), which we will use as the name of a variable of

boolean type, to each internal node of N of T whose grammar symbol is S, E, T , F , or V .
(We do not assign strings to the internal nodes whose grammar symbols are P , A, or N .)
We use the following rules in making this assignment:

1. variable(Si) = s〈i〉 for each i, where 〈i〉 is the decimal numeral for i. (For example,
variable(S27) = s27.)

2. variable(Ei) = e〈i〉 for each i.

3. variable(Ti) = t〈i〉 for each i.

4. variable(Fi) = f〈i〉 for each i.

5. variable(Vi) = leaves(Vi)

We call the variables assigned to the S, E, T , and F nodes internal parse tree variables.
We now define a string u ∈ Lbool which consists of the conjunction of a number of

clauses, one corresponding to each internal node of the parse tree, plus one more, which we
call the top clause. Those clauses are defined as follows:

1. (s1) is a clause of u. This is the top clause of u.

2. If there is a subscripted derivation Si → Ej = Ek, then (s〈i〉 = (e〈j〉 = e〈k〉)) is a
clause of u.

3. If there is a subscripted derivation Si → Ej ⇒ Ek, then (s〈i〉 = (e〈j〉 ⇒ e〈k〉)) is a
clause of u.

4. If there is a subscripted derivation Si → Ej , then (s〈i〉 = e〈i〉) is a clause of u.

5. If there is a subscripted derivation Ei → Tj , then (e〈i〉 = t〈j〉) is a clause of u.

6. If there is a subscripted derivation Ei → Ej + Tk, then (e〈i〉 = (e〈j〉 + t〈k〉)) is a
clause of u.

7. If there is a subscripted derivation Ti → Fj , then (t〈i〉 = f〈j〉) is a clause of u.

8. If there is a subscripted derivation Ti → Tj ·Fk, then (t〈i〉 = t〈j〉 · f〈k〉) is a clause of
u.

9. If there is a subscripted derivation Fi →∼ Fj , then (f〈i〉 =∼ f〈k〉) is a clause of u.

8

10. If there is a subscripted derivation Fi → (Sj), then (f〈i〉 = s〈j〉) is a clause of u.

11. If there is a subscripted derivation Fi → Vj , then (f〈i〉 = variable(Vj)) is a clause of
u.

All the clauses of u other than the top clause we call internal clauses. The variable to the
left side of the first “=” in an internal clause we call the left hand side of the clause. The
expression to the right of the first “=” in an internal clause we call the right hand side of
the clause.

Lemma 6 u is satisfiable if and only if w is satisfiable.

Proof: The set of variables in u is the set of variables of w together with the internal
parse tree variables. For any assignment of truth values of the variables of w, there is a
unique assignment of the internal parse tree variables that makes all the internal clauses
true, which can be computed as follows. There is one internal clause for each internal node
of the tree labeled S, E, T , or F . Visit these in bottom-up order. For each such clause, we
evaluate the right hand side, since the truth values of all variables in the right hand side
have been assigned. We then assign that same value to the left hand side of the clause.
These assignments, together with the assignments of the truth values of the variables of w,
constitute an assignment of the truth values of all variables of u. All internal clauses of u
are satisfied by this assignment, so the assignment satisfies u if and only if it satisfies the
top clause (s1). But that is true if and only if the original assignment of the variables of w
is a satisfying assignment.

This concludes the proof of Lemma 6. ✷

We now construct a boolean expression v in conjunctive normal form which is equiva-
lent to u, by replacing each internal clause of u with an equivalent boolean expression in
conjunctive normal form, and where each clause has at most three terms.

• The top clause (s1) is not replaced.

• A clause of the form (x = y) is replaced by (x+ ∼ y) · (y+ ∼ x).

• A clause of the form (x =∼ y) is replaced by (x+ y) · (∼ y+ ∼ x).

• A clause of the form (x = y + z) is replaced by (x+ ∼ y) · (x+ ∼ z) · (∼ x+ y + z).

• A clause of the form (x = y · z) is replaced by (x+ ∼ y+ ∼ z) · (∼ x+ y) · (∼ x+ z).

• A clause of the form (x = (y = z)) is replaced by
(x+ y + z) · (x+ ∼ y+ ∼ z) · (∼ x+ y+ ∼ z) · (∼ x+ ∼ y + z)

• A clause of the form (x = (y ⇒ z)) is replaced by (x+ y) · (x+ ∼ z) · (∼ x+ ∼ y+ z).

Since v is equivalent to u, then, by Lemma 6, v is satisfiable if and only if w is satisfiable.
We now define F (w) by expanding each clause of v so that it has exactly three terms, e.g.,
we replace (x+ y) by (x+ x+ y). Thus, F (w) is satisfiable if and only if w is satisfiable.

9

Finally, we must show that F (w) can be computed in polynomial time. Suppose |w| = n.
Then T has O(n) nodes, and can be computed in O(n) time by a lexical analyzer followed
by an LALR parser. Then u can be computed from T in O(n) time, v can be computed
from u in O(n) time, and F (w) can be computed from v in O(n) time.

This concludes the proof of Theorem 7. ✷

Other NP-Complete Problems

The most common method of proving that a given problem (i.e., language) is NP-complete
is to use Theorem 2, where L1 is taken to be a problem (i.e., language) already known to
be NP-complete. The problem L3cnf-sat is one of the more popular choices used for this
purpose.4

The Independent Set Problem

Given a graph G and a number k, an independent set of G is defined to be a set I of vertices
of G such that no two members of I are connected by an edge of G. The order of I is
defined to be its size, i.e.., simply how many vertices it contains.

An instance of the independent set problem consists of a graph G and a number k. The
question is, ”Does G have an independent set of order k?”

The language Lind. Pick an alphabet Σ (without loss of generality, Σ is set of Ascii
symbols, including an “end-of-file” symbol) and decide on a method of encoding graphs.
For any graph G, let 〈G〉 be the encoding of G by that method. We insist that 〈G〉 have
a recognizable and unique end of file suffix, i.e., it has a suffix that appears as a substring
nowhere else in 〈G〉. For any number k, let 〈k〉 be an encoding of k.

Now, let Linstance-ind = {〈G〉〈k〉}, and let Lind ⊆ Linstance-ind be the set of all
〈G〉〈k〉 such that G has an independent set of order k. The purpose of the end of file suffix
is to enable a machine reading w = 〈G〉〈k〉 ∈ Linstance-ind to tell where 〈G〉 ends and 〈k〉
begins.5

Theorem 8 Lind is NP complete.

Proof: We first define a certificate system for Lind. For any w = 〈G〉〈k〉 ∈ Lind, a
certificate for w is an encoding 〈I〉 of some independent set I of G of order k. Since that
encoding can be made shorter than 〈G〉 itself, and since a simple program can easily verify
a certificate, we have, by Theorem 4, that Lind ∈ NP.

We will use Theorems 2 and 7 to complete the proof, by showing that there is a polyno-
mial time reduction of L3cnf-sat to Lind. Let Σ be an alphabet which includes the alphabet
of L3cnf and also the alphabet of Linstance-ind. For any w ∈ Σ∗, we will define a string
F (w) ∈ Σ∗ such that:

4The precise definition of the problem described in this handout as L3cnf-sat differs from book to book,

but they are all equivalent.
5If Σ is the Ascii alphabet, we can requre that the end of file suffix be the single end-of-file symbol, and

that the encoding of a number be its decimal numeral. Alternatively, we could have said that G and k must

be encoded in binary, and that the end of file suffix is the string ‘111111’, or some other string we choose in

advance. But whether we use Ascii or binary or some other encoding does not matter.

10

1. If w ∈ L3cnf, then F (w) ∈ Linstance-ind, else F (w) is the empty string.

2. w ∈ L3cnf-sat if and only if F (w) ∈ Lind.

We now proceed to define F (w) for a given w ∈ L3cnf. We write w = C1 · C2 · · · · · Ck,
where Ci = (ti,1 + ti,2 + ti,3), where each ti,j is either x or ∼ x, where x is a string which
represents a variable.

We now define a graph G = (V,E), and then define F (w) = 〈G〉〈k〉. We let V be a set
of vertices {vi,j |1 ≤ i ≤ k, 1 ≤ j ≤ 3}. E is defined as follows:

1. For each i, there is an edge from vi,j to vi,j′ for all 1 ≤ j < j′ ≤ 3.

2. If ti,j = x and ti′,j′ =∼ x for some string x, there is an edge from vi,j to vi′,j′ .

3. There are no other edges.

We now show that F (w) ∈ Lind if and only if w is satisfiable. For each i, let Ki be
the subgraph of G consisting of the three vertices vi,1, vi,2, vi,3, and the edges connecting
them. Suppose that I is an independent set of G of order of k. Since I is independent,
it cannot contain more than one vertex from each Ki. Since it has order k, it must then
contain exactly one vertex from each Ki. For each i, let j(i) ∈ {1, 2, 3} be defined such
that vi,j(i) ∈ I. We now define an assignment of w, as follows:

1. For any i, if ti,j(i) = x for some variable x, we assign x = true.

2. For any i, if ti,j(i) =∼ x for some variable x, we assign x = false.

3. If a variable x used in w is not assigned using the above two rules, we assign x =
false. (Actually, we could assign x either truth value.)

We claim that the above assignment is well-defined and satisfies w. Suppose the assignment
is not well-defined, i.e., the same variable x is assigned to be both true and false. That
implies that ti,j(i) = x and ti′,j(i′) =∼ x, where i 6= i′. But this is impossible since, in G,
there is an edge from vi,j(i) to vi′,j(i′). The assignment satisfies w because it satisfies every
clause; for each i, Ci is satisfied because the term ti,j(i) is true under the assignment.

Conversely, suppose that w has a satisfying assignment. For each i, at least one term
of Ci must be true under the assignment. Let j(i) ∈ {1, 2, 3} be defined such that ti,j(i)
is true under the assignment. If more than one term of Ci is true under the assignment,

j(i) can be chosen arbitrarily. Now, define I =
{

vi,j(i)

}

, which clearly has order k. If I

were not independent, there would have to be an edge between two members of I. Since
I contains just one member of each Ki, this edge would have to be from vi,j(i) to vi′,j(i′),
where ti,j(i) = x and ti′,j(i′)=∼x for some variable x, and where i 6= i′. Under the given
assignment, both of those terms must be true, which is a contradiction.

This completes the proof of Theorem 8. ✷

11

Appendix

Context-free grammar for Lbool

The start symbol is S.
S → E = E | E ⇒ E | E
E → E + T | T
T → T · F | F
F → ∼ F | V | (S)
V → AP

P → AP | NP | ǫ
A → a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z
N → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Context-free grammar for L3cnf

The start symbol is E.
E → E · C | C
C → (T + T + T)
T → ∼ V | V
V → AP

P → AP | NP | ǫ
A → a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z
N → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

12

