Computational Classes of Problems

For each of these problems, or languages, give its best **known** computational class. For example, the answer could be \mathcal{P} , \mathcal{NP} , \mathcal{NP} -complete, \mathcal{P} -SPACE, recursive, recursively enumerable, to name just a few. For example, if a problem is known to be in the class \mathcal{NP} , but is not known to be in \mathcal{P} , and is also not known to be \mathcal{NP} -complete, you answer would be " \mathcal{NP} ." If there is no class with a standard definition which contains the problem, you can say, "Not a member of any class that I can find." That could be the correct answer!

- 1. Given a graph G, is G planar? (That is, can it be drawn in a plane with no crossings?)
 - \mathcal{NC} . Planarity has been known to be \mathcal{P} since 1963, was shown to be linear O(n) time in 1974, and was shown to be \mathcal{NC} in 1985. It actually can be proved to be in classes even more restrictive than \mathcal{NC} , but we never discussed those in class, so \mathcal{NC} is the answer I want to see.
- 2. Given a room and various pieces of furniture and equipment, it is possible for those items to fit into the room?
 - \mathcal{NP} -complete. Partition reduces to this problem. If there are n item where the i^{th} item has weight x_i . By multiplying all weights by a sufficiently large factor, we may assume that $x_i > 2$ for all i. let $S = \frac{1}{2} \sum_{i=1}^{n} x_i$. Let F_i be a piece of furniture with a $1 \times x_i$ rectangular base. All furniture can be fit into a rectangular room of size $2 \times S$ if and only if the items can be partitioned into two sets of equal weight. The rule that $x_i > 2$ ensures that every piece of furniture must be inserted lengthwise, to eliminate the possibility of an "extraneous" solution that might be obtained by placing one of them crosswise.
- 3. Given a room with a door, and various pieces of furniture and equipment, is it possible to move those items into the room through the door? (This is not the same question!)
 - I believe it is \mathcal{P} -SPACE complete, same as $Rush\ Hour$. I haven't found a proof yet, but I have confidence.
- 4. Does a context-free grammar generate all string? More specifically, given a context-free grammar G where Σ is the set of terminals of G, is it true that $L(G) = \Sigma^*$?
 - Undecidable, more specifically, co- \mathcal{RE} , but not recursive.
- 5. Given an $n \times n$ checkerboard, for some n, and given a configuration of checkers on that board, can the black player win?
 - \mathcal{EXP} -TIME complete.

- 6. Given a Turing machine M and a number t, will M halt within t steps? \mathcal{P} , that is, \mathcal{P} -TIME.
- 7. Does a given general grammar G generate a given string w?

 Undecidable, more specifically, \mathcal{RE} , recursively enumerable, but not recursive.
- 8. Given a set of jobs and a set of workers, where each worker is trained to work some given subset of the jobs, each job takes a given amount of time, and pairs of jobs (X, Y) are given, where X must be finished before work on Y begins, can all the jobs be finished within T hours?
 - \mathcal{NP} -complete. Partition can be reduced to this problem as follows. Given a set of items of weights $x_1, \ldots x_n$ create Jobs $J_1, \ldots J_n$ where J_i takes x_i hours, and where are no dependencies, and where there are two workers, each trained to do any job. Let $T = \frac{1}{2} \sum_{i=1}^{n} x_i$ Then all jobs can be finished within T hours if and only if the original items can be partitioned into two equal weight sets.
- 9. We define a partial inversion of a string to be the string obtained reversing any substring. For example, abaacdab is a partial inversion of abadcaab. Given strings u and v and a number k, is it possible to obtain v from u by a sequence of k partial inversions?
 - \mathcal{NP} -complete. This is similar to the famous "pancake flipping" problem, introduced in 1975 in the American Mathematical Monthly, and made famous by a paper, by William H. Gates and Christos H. Papadimetriou, published in 1979. (Yes, that Bill Gates.) That problem was, how can a list be sorted most efficiently using only prefix reversal, i.e. substring inversion where the substring must be a prefix. The problem of whether the sorting can be done is at most k steps was proven to be \mathcal{NP} -complete in 2011 by Laurent Bulteau, Guillaume Ferlin, and Irena Rusu. I have not tried to generalize their result to the partial inversion problem, but I have no doubt it is also \mathcal{NP} -complete.