
Computational Classes of Problems

For each of these problems, or languages, give its best known computational class. For
example, the answer could be P, NP, NP-complete, P-space, recursive, recursively enu-
merable, to name just a few. For example, if a problem is known to be in the class NP,
but is not known to be in P, and is also not known to be NP-complete, you answer would
be “NP.” If there is no class with a standard definition which contains the problem, you
can say, “Not a member of any class that I can find.” That could be the correct answer!

1. Given a graph G, is G planar? (That is, can it be drawn in a plane with no crossings?)

NC. Planarity has been known to be P since 1963, was shown to be linear O(n) time
in 1974, and was shown to be NC in 1985. It actually can be proved to be in classes
even more restrictive than NC, but we never discussed those in class, so NC is the
answer I want to see.

2. Given a room and various pieces of furniture and equipment, it is possible for those
items to fit into the room?

NP-complete. Partition reduces to this problem. If there are n item where the ith

item has weight xi. By multiplying all weights by a sufficiently large factor, we may
assume that xi > 2 for all i. let S = 1

2

∑
n

i=1 xi. Let Fi be a piece of furniture with a
1× xi rectangular base. All furniture can be fit into a rectangular room of size 2× S

if and only if the items can be partitioned into two sets of equal weight. The rule that
xi > 2 ensures that every piece of furniture must be inserted lengthwise, to eliminate
the possibility of an “extraneous” solution that might be obtained by placing one of
them crosswise.

3. Given a room with a door, and various pieces of furniture and equipment, is it possible
to move those items into the room through the door? (This is not the same question!)

I believe it is P-space complete, same as Rush Hour. I haven’t found a proof yet,
but I have confidence.

4. Does a context-free grammar generate all string? More specifically, given a context-
free grammar G where Σ is the set of terminals of G, is it true that L(G) = Σ∗?

Undecidable, more specifically, co-RE , but not recursive.

5. Given an n × n checkerboard, for some n, and given a configuration of checkers on
that board, can the black player win?

EXP-time complete.

1



6. Given a Turing machine M and a number t, will M halt within t steps?

P, that is, P-time.

7. Does a given general grammar G generate a given string w?

Undecidable, more specifically, RE , recursively enumerable, but not recursive.

8. Given a set of jobs and a set of workers, where each worker is trained to work some
given subset of the jobs, each job takes a given amount of time, and pairs of jobs
(X,Y ) are given, where X must be finished before work on Y begins, can all the jobs
be finished within T hours?

NP-complete. Partition can be reduced to this problem as follows. Given a set of
items of weights x1, . . . xn create Jobs J1, . . . Jn where Ji takes xi hours, and where
are no dependencies, and where there are two workers, each trained to do any job.
Let T = 1

2

∑
n

i=1 xi Then all jobs can be finished within T hours if and only if the
original items can be partitioned into two equal weight sets.

9. We define a partial inversion of a string to be the string obtained reversing any
substring. For example, abaacdab is a partial inversion of abadcaab. Given strings u
and v and a number k, is it possible to obtain v from u by a sequence of k partial
inversions?

NP-complete. This is similar to the famous “pancake flipping” problem, introduced
in 1975 in the American Mathematical Monthly, and made famous by a paper, by
William H. Gates and Christos H. Papadimetriou, published in 1979. (Yes, that Bill
Gates.) That problem was, how can a list be sorted most efficiently using only prefix
reversal, i.e. substring inversion where the substring must be a prefix. The problem
of whether the sorting can be done is at most k steps was proven to be NP-complete
in 2011 by Laurent Bulteau, Guillaume Ferlin, and Irena Rusu. I have not tried to
generalize their result to the partial inversion problem, but I have no doubt it is also
NP-complete.

2


