Instantaneous Description (id)

An **id** is a string, the concatenation of the following three strings.

- 1. The contents of the tape before the current cell, possibly the empty string.
- 2. The current state.
- 3. The contents of the current cell, one symbol.
- 4. The contents of the tape after the current cell but with trailing blanks deleted; possibly the empty string.

We denote a blank by " \sqcup ." A state q_i for an integer i, and q_1 is the start state. Each transition are labeled as $a \to b, M$, where a is the symbol at the current cell, b is symbol written at the current cell, and M is the movement of the read-write head, either L, R or S, for left, right, and stay. If a = b, we write $a \to M$ for short. The input string w is initially in the first |w| cells, and the leftmost cell is the initial current cell. Thus, the initial id is q_1w .

Example

Figure 1 illustrates a TM M which decides the language $\{0^{2^k}\}$. The input alphabet is $\{0\}$ and the tape alphabet is $\{0, x, \sqcup\}$. If the input is accepted, M halts in state q_6 , otherwise it halts in state q_7 .

Figure 1: State Diagram of M, a Turing Machine which Decides $\{0^{2^k}\}$

Explanation

At each state during an accepting comutation, that is, if the input is 0^{2^k} , the number of zeros in the string is indicated in the diagram. The first zero is removed from q_1 to q_2 . If there is none, the input is rejected. A zero is removed by replacing it by x.

An accepting computation iterates a loop from q_2 back to q_2 , If there are m zeros at q_2 , and m is odd, the back and forth movement between q_3 and q_4 deletes $\frac{m+1}{2}$ zeros. If $m=2^k$, after k iterations of the loop, the computation reaches q_2 with no zeros on the tape, and the next step is to accept by moving to q_6 . On the other had, if the initial number of zeros is not a power of 2, eventually there will be no zeros on the tape at q_4 , and the next state is q_7 , the reject state.

For example: if the input is 0^{16} , there will be 15 zeros at q_2 , then later 7 zeros at q_2 , then 3, then 1, then 0, followed by acceptance. On the other hand, if the the input is 0^{12} , there will at first be 11 zeros on the tape at q_2 , then 5 the next time, then 2 the next time, leading to the current cell being blank at q_4 , followed by rejection. We give computations of M with input 0^n for values of n from 1 to 6.

 q_10

 $\sqcup q_2 \sqcup$

 $\sqcup \sqcup q_6 \sqcup$

Accept

 $q_{1}00$

 $\sqcup q_2 0$

 $\sqcup xq_3 \sqcup$

 $\sqcup q_5 x$

 $q_5 \sqcup x$

 $\sqcup q_2 x$

 $\sqcup xq_2 \sqcup$

 $\sqcup x \sqcup q_6 \sqcup$

Accept

 q_1000

 $\sqcup q_2 00$

 $\sqcup xq_30$

 $\sqcup x0q_4 \sqcup$

 $\sqcup x0 \sqcup q_7 \sqcup$

Reject

 q_10000

 $\sqcup q_2000$

 $\sqcup xq_300$

 $\sqcup x0q_40$

 $\sqcup x0xq_3 \sqcup$

 $\sqcup x0q_5x$

 $\sqcup xq_50x$

 $\sqcup q_5 x 0 x$

 $q_5 \sqcup x0x$

 $\sqcup q_2 x 0 x$

 $\sqcup xq_20x$

 $\sqcup xxq_3x$

 $\sqcup xxxq_3 \sqcup$

 $\sqcup xxq_5x$

 $\sqcup xq_5xx$

 $\sqcup q_5 xxx$

 $q_5 \sqcup xxx$

 $\sqcup q_2 xxx$

 $\sqcup xq_2xx$

 $\Box xq_2xx$ $\Box xxq_2x$

 $\sqcup xxxq_2 \sqcup$

 $\sqcup xxx \sqcup q_6 \sqcup$

Accept

 q_100000

 $\sqcup q_20000$

 $\sqcup xq_3000$

 $\sqcup x0q_400$

 $\sqcup x0xq_30$

 $\sqcup x0x0q_4 \sqcup$

 $\sqcup x0x0 \sqcup q_7 \sqcup$

Reject

 $q_1000000$

 $\sqcup q_200000$

 $\sqcup xq_30000$

 $\sqcup x0q_4000$

 $\sqcup x0xq_300$

 $\sqcup x0x0q_40$

 $\sqcup x0x0xq_3 \sqcup$

 $\sqcup x0x0q_5x$

 $\sqcup x0xq_50x$

 $\sqcup x0q_5x0x$

 $\sqcup xq_50x0x$

 $\sqcup q_5 x 0 x 0 x$

 $q_5 \sqcup x0x0x$

 $\sqcup q_2 x 0 x 0 x$

 $\sqcup xq_20x0x$

 $\sqcup xxq_3x0x$

 $\sqcup xxxq_30x$

 $\sqcup xxx0q_4x$

 $\sqcup xxx0xq_4 \sqcup$

 $\sqcup xxx0x \sqcup q_7 \sqcup$

Reject