University of Nevada, Las Vegas Computer Science 456/656 Spring 2019

Practice for the Final on May 15, 2019

The entire examination is 765 points. The actual final examination will be shorter.

- 1. [5 points each] True or False. If the question is currently open, write "O" or "Open."
 - (i) _____ Every subset of a regular language is regular.
 - (ii) _____ The intersection of any context-free language with any regular language is context-free.
 - (iii) _____ The complement of every recursive language is recursive.
 - (iv) _____ The complement of every recursively enumerable language is recursively enumerable.
 - (v) _____ Every language which is generated by a general grammar is recursively enumerable.
 - (vi) _____ The question of whether two context-free grammars generate the same language is undecidable.
 - (vii) _____ There exists some proposition which is true but which has no proof.
 - (viii) _____ The set of all binary numerals for prime numbers is in the class \mathcal{P} .
 - (ix) _____ If L_1 reduces to L_2 in polynomial time, and if L_2 is \mathcal{NP} , and if L_1 is \mathcal{NP} -complete, then L_2 must be \mathcal{NP} -complete.
 - (x) _____ Given any context-free grammar G and any string $w \in L(G)$, there is always a unique leftmost derivation of w using G.
 - (xi) _____ For any deterministic finite automaton, there is always a unique minimal non-deterministic finite automaton equivalent to it.
 - (xii) \dots The question of whether two regular expressions are equivalent is \mathcal{NP} -complete.
 - (xiii) _____ The halting problem is recursively enumerable.
 - (xiv) _____ The complement of every context-free language is context-free.
 - (xv) _____ No language which has an ambiguous context-free grammar can be accepted by a DPDA.
 - (xvi) _____ The union of any two context-free languages is context-free.
 - (xvii) _____ The question of whether a given Turing Machine halts with empty input is decidable.
- (xviii) _____ The class of languages accepted by non-deterministic finite automata is the same as the class of languages accepted by deterministic finite automata.

- (xix) _____ The class of languages accepted by non-deterministic push-down automata is the same as the class of languages accepted by deterministic push-down automata.
- (xx) _____ The intersection of any two regular languages is regular.
- (xxi) _____ The intersection of any two context-free languages is context-free.
- (xxii) _____ If L_1 reduces to L_2 in polynomial time, and if L_2 is \mathcal{NP} , then L_1 must be \mathcal{NP} .
- (xxiii) _____ Let F(0) = 1, and let $F(n) = 2^{F(n-1)}$ for n > 0. Then F is recursive.
- (xxiv) _____ Every language which is accepted by some non-deterministic machine is accepted by some deterministic machine.
- (xxv) _____ The language of all regular expressions over the binary alphabet is a regular language.
- (xxvi) _____ Let π be the ratio of the circumference of a circle to its diameter. (That's the usual meaning of π you learned in kindergarten.) The problem of whether the n^{th} digit of π , for a given n, is equal to a given digit is decidable.
- (xxvii) _____ There cannot exist any computer program that can decide whether any two C++ programs are equivalent.
- (xxviii) $_$ An undecidable language is necessarily \mathcal{NP} -complete.
- (xxix) $_$ Every context-free language is in the class \mathcal{P} -TIME.
- (xxx) Every regular language is in the class \mathcal{NC}
- (xxxi) _____ Every function that can be mathematically defined is recursive.
- (xxxii) _____ The language of all binary strings which are the binary numerals for multiples of 23 is regular.
- (xxxiii) _____ The language of all binary strings which are the binary numerals for prime numbers is context-free.
- (xxxiv) _____ Every bounded function from integers to integers is Turing-computable. (We say that f is bounded if there is some B such that $|f(n)| \leq B$ for all n.)
- (xxxy) _____ The language of all palindromes over $\{0,1\}$ is inherently ambiguous.
- (xxxvi) ______ Every context-free grammar can be parsed by some deterministic top-down parser.
- (xxxvii) _____ Every context-free grammar can be parsed by some non-deterministic top-down parser.
- (xxxviii) _____ Commercially available parsers cannot use the LALR technique, since most modern programming languages are not context-free.
- (xxxix) _____ The boolean satisfiability problem is undecidable.
 - (xl) _____ If anyone ever proves that $\mathcal{P} = \mathcal{NP}$, then all one-way encoding systems will be insecure.
 - (xli) _____ If a string w is generated by a context-free grammer G, then w has a unique leftmost derivation if and only if it has a unique rightmost derivation.

- 2. [10 points] If there is an easy reduction from L_1 to L_2 , then ______ is at least as hard as ______.
- 3. [5 points each] For each language given, write "R" if the language is recursive, write "RE not R" if the language is recursively enumerable but not recursive, and write "not RE" if the language is not recursively enumerable.
 - (a) $_$ The language consisting of all Pascal programs P such that P halts if given P as its input file.
 - (b) _____ The language of all encodings of Turing Machines which fail to halt for at least one possible input string.
 - (c) _____ The 0-1 Traveling Salesman Problem.
 - (d) _____ The diagonal language.
 - (e) _____ $L_{\rm sat},$ the set of satisfiable boolean expressions.
- 4. [15 points] Draw the state diagram for a minimal DFA that accepts the language described by the regular expression a*a(b+ab)*
- 5. [15 points] Write a regular expression for the language accepted by the NFA shown in Figure 1.

Figure 1: The NFA for Problems 5 and 18.

6. [20 points] Let L be the language of all binary numerals for positive integers equivalent to 2 modulo 3. Thus, for example, the binary numerals for 2, 5, 8, 11, 14, 17 ... are in L. We allow a binary numeral to have leading zeros; thus (for example) $001110 \in L$, since it is a binary numeral for 14. Draw a minimal DFA which accepts L. 7. [20 points] Design a PDA that accepts the language of all palindromes over the alphabet $\{a, b\}$.

- 8. [10 points] Consider the context-free grammar with start symbol S and productions as follows:
 - $S \to s$
 - $S \to bLn$
 - $S \to wS$
 - $L \to \epsilon$
 - $L \to SL$

Write a leftmost derivation of the string bswsbwsnn

- 9. [5 points] What class of machines accepts the class of context free languages?
- 10. [5 points] What class of machines accepts the class of regular languages?
- 11. [5 points] What class of machines accepts the class of recursively enumerable languages?
- 12. [10 points] What is the Church-Turing Thesis, and why is it important?
- 13. [10 points] What does it mean to say that a language can be recursively enumerated in *canonical order*? What is the class of languages that can be so enumerated?
- 14. [5 points] What does it mean to say that machines M_1 and M_2 are equivalent?
- 15. Give definitions: [10 points each]
 - (a) Give a definition of the language class \mathcal{NP} -TIME.
 - (b) Give the definition of a polynomial time reduction of a language L_1 to another language L_2 .
 - (c) Give a definition of \mathcal{NP} -complete language.
 - (d) Give a definition of a *decidable language*.
- 16. [15 points] We say a binary string w over is *balanced* if w has the same number of 1's as 0's. Let L be the set of balanced binary strings. Give a context-free grammar for L.
- 17. [10 points] Give a Chomsky Normal Form grammar for the language of all palindromes over the alphabet $\{a, b\}$.

18. [20 points] Construct a minimal DFA equivalent equivalent to the NFA shown in Figure 1.

- 19. [10 points] Consider the context-free grammar G, with start symbol S and productions as follows:
 - $S \to s$
 - $S \to bLn$
 - $S \to iS$
 - $S \rightarrow iSeS$
 - $L \to \epsilon$
 - $L \to LS$

Prove that G is ambiguous by giving two different leftmost derivations for some string.

- 20. [10 points] What does it mean to say that a language L_1 reduces to a language L_2 in polynomial time?
- 21. [10 points] What does it mean to say that a language L is decidable?
- 22. Every language we have discussed this semester falls into one of these categories.
 - a. \mathcal{NC} .
 - b. \mathcal{P} but not known to be \mathcal{NC} .
 - c. \mathcal{NP} but not known to be $\mathcal P$ and not known to be $\mathcal{NP}\text{-complete.}$
 - d. Co- \mathcal{NP} but not known to be \mathcal{P} .
 - e. Known to be \mathcal{NP} -complete.
 - f. Recursive, but not known to be \mathcal{NP} .
 - g. RE (Recursively enumerable), but not recursive.
 - h. Co-RE, but not recursive.
 - i. Neither RE nor co-RE.

State which of the above categories each of the languages below falls into. [5 points each]

- (i) _____ Boolean satisfiability.
- (ii) _____ The 0-1 traveling salesman problem.
- (iii) _____ The restricted subset sum problem where, for each instance, each number is a positive integer that does not exceed the square of the number of items, and all the numbers are written in binary notation.
- (iv) _____ The halting problem.
- (v) _____ The diagonal language.
- (vi) $_$ The clique problem.

- (vii) _____ Primality, where the input is written in binary.
- (viii) _____ The language generated by a given context-free grammar.
- (ix) _____ The language of all monotone increasing sequences of arabic numerals for positive integers. (For example, "1,5,23,41,200,201" is a member of that language.)
- (x) _____ The language accepted by a given DFA.
- (xi) _____ The 0/1 factoring problem, *i.e.* the set of all pairs of integers (n, m) such that n has a proper divisor which is at least m. (The input for an instance of this problem is the string consisting of the binary numeral for n, followed by a comma, followed by the binary numeral for m.)
- (xii) ------ The unary version of the 0/1 factoring problem, *i.e.* the set of all pairs of integers (n, m) such that n has a proper divisor which is at least m. (The input for an instance of this problem is the string consisting of the unary numeral for n, followed by a comma, followed by the unary numeral for m.)
- (xiii) _____ The set of all positions from which black can force a win in a game of generalized checkers.
- (xiv) _____ The set of all configurations of the children's game "Boxes" from which the first player can force a win. (I used to play that game as a child, and I never did figure out an optimal strategy. I don't feel bad about that anymore, now that I know the complexity class of that problem.)
- (xv) _____ The set of all configurations of the game "Nim" from which the first player can force a win.
- (xvi) _____ The set of all ordered pairs of positive numerals $(\langle n \rangle, \langle m \rangle) m = \beta(n)$, where β is the busy beaver function.
- (xvii) _____ The traveling salesman problem.
- (xviii) _____ Boolean satisfiability.
- (xix) _____ The halting problem.
- (xx) _____ Primality.
- $(\mathbf{x}\mathbf{x}\mathbf{i})$ _____ The context-free grammar equivalence problem.
- (xxii) _____ The independent set problem.
- 23. [30 points] The grammar below is an alternative unambiguous CF grammar for the Dyck language. Design an LALR parser for that grammar.

For your convenience, stack states are given on the right hand side of the production.

		a	b	\$	S
	0				
$1 \ S \to S_{1,3} a_2 S_3 b_4$	1			halt	
$2 S \rightarrow \epsilon$	2				
	3				
	4				

- 24. For each of the following languages, state whether the language is regular, context-free but not regular, context-sensitive but not context-free, or not context-sensitive.[5 points each]
- 25. _____ The set of all strings over the alphabet $\{a, b\}$ of the form $a^n b^m$.
- 26. _____ The set of all strings over the alphabet $\{a, b\}$ of the form $a^n b^n$.
- 27. _____ The set of all strings over the alphabet $\{a, b, c\}$ of the form $a^n b^n c^n$.
- 28. _____ The set of all strings over the alphabet $\{a, b, c\}$ which are **not** of the form $a^n b^n c^n$.
- 29. _____ The set of all strings over the alphabet $\{a\}$ of the form a^{n^2} .
- 30. [15 points] Draw a minimal DFA which accepts the language L over the binary alphabet $\Sigma = \{a, b, c\}$ consisting of all strings which contain either *aba* or *caa* as a substring.
- 31. [10 points] State the pumping lemma for regular languages accurately. If you have all the right words but in the wrong order, that means you truly do not understand the lemma, and you might get no partial credit at all.
- 32. [20 points] In class, we demonstrated that a language is in the class \mathcal{NP} if and only if it has a polynomial time *verifier*.

What is a polynomial time verifier of a language? Your explanation should include the word "certificate," or as it is sometimes known, "witness."

- 33. These are reduction problems. I could give one of them on the test. The proof should be very informal.
 - (a) Find a \mathcal{P} -time reduction of 3-CNF-SAT to the independent set problem.
 - (b) Find a \mathcal{P} -time reduction of the independent set problem to the subset sum problem.
 - (c) Find a \mathcal{P} -time reduction of the subset sum problem to the partition problem.
- 34. [20 points] Prove that every recursively enumerable language is accepted by some Turing machine.

35. [20 points] Prove that every language accepted by a Turing machine is recursively enumerable.

- 36. [20 points] Give a general grammar for the language $\{a^{2^n}\}$
- 37. [20 points] Prove that the halting problem is undecidable.