University of Nevada, Las Vegas Computer Science 456/656 Spring 2020
 Assignment 1 Answers: Due Tuesday February 4, 2020

Name: \qquad
You are permitted to work in groups, get help from others, read books, and use the internet. But the handwriting on this document must be your own. Print out the document, staple, and fill in the answers. You may attach extra sheets. Turn in the pages to the graduate assistant at the beginning of class, September 4. In each case, the identical problem is in both fifth and sixth editions.

1. Problems 11(d) on page 38 of the fifth edition, problems $14(\mathrm{~d})$ on page 29 of the sixth edition.

If $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is an NFA, we can transform M to a regular grammar G which generates $L(M)$, as follows. there is a construction which uses M to define a regular gammar for L. There is one variable of G for each state of M, and there is one production of G for each transition (arc) of M and one production for each final state of M.
(a) Let $Q=\left\{q_{0}, q_{1}, \ldots q_{k}\right\}$. The variables of G will be $A_{0}, A_{1}, \ldots A_{k}$, and A_{0} is the start symbol.
(b) If M has a transition $q_{i} \xrightarrow{a} q_{j}$ for $a \in \Sigma$, then G has a production $A_{i} \rightarrow a A_{j}$.
(c) If M has a transition $q_{i} \xrightarrow{\lambda} q_{j}$, then G has a production $A_{i} \rightarrow A_{j}$.
(d) If $q_{i} \in F$, then G has a production $A_{i} \rightarrow \lambda$.

The language consisting of all strings over $\Sigma=\{a, b\}$ with at least $3 a$'s is accepted by the following DFA (which is, of course, also an NFA):

The grammar G obtained from M by the transformation given above has the productions:

$$
\begin{aligned}
& A_{0} \rightarrow b A_{0} \mid a A_{1} \\
& A_{1} \rightarrow b A_{1} \mid a A_{2} \\
& A_{2} \rightarrow b A_{2} \mid a A_{3} \\
& A_{3} \rightarrow a A_{3}\left|b A_{3}\right| \lambda
\end{aligned}
$$

2. Problems 12 on page 38 of the fifth edition,

$$
L(G)=\left\{(a b)^{n}: n \geq 0\right\}
$$

problems 15 on page 29 of the sixth edition.

$$
L(G)=\left\{(a a b)^{n}: n \geq 0\right\}
$$

3. Problems 13 on page 38 of the fifth edition, problems 16 on page 29 of the sixth edition.

$$
L(G)=\emptyset(\text { the empty language })
$$

4. Problems $14(\mathrm{a}), 14(\mathrm{~h})$ on page 39 of the fifth edition,

$$
\begin{aligned}
& S \rightarrow a S b \\
& S \rightarrow T b \\
& T \rightarrow T b \\
& T \rightarrow \lambda
\end{aligned}
$$

5. problems $17(\mathrm{a}), 17(\mathrm{~h})$ on page 29 of the sixth edition.

We introduce a third variable, S^{\prime}, which plays the same role as S does in the previous problem. The new start symbol S then generates arbitrarily many copies of S^{\prime}, each of which generates a member of L_{1}.

$$
\begin{aligned}
& S \rightarrow S^{\prime} S \\
& S \rightarrow \lambda \\
& S^{\prime} \rightarrow a S^{\prime} b \\
& S^{\prime} \rightarrow T b \\
& T \rightarrow T b \\
& T \rightarrow \lambda
\end{aligned}
$$

6. Problem 4 on page 44 of the fitth edition, problem 6 on page 35 of the sixth edition. Instead of showing all 26 letters and ten digits, we simplify the figure by simply writing "digit" instead of $0,1,2,3,4,5,6,7,8,9$, similarly for letters.

We use the DFA above and we introduce two variables, L for letter and D for digit. Our grammar has variables $A_{0}, A_{1}, A_{2}, A_{3}, A_{4}, L, D$, and the start symbol is A_{0}.

$$
\begin{aligned}
& A_{0} \rightarrow L A_{1} \\
& A_{1} \rightarrow D A_{2} \mid L A_{1} \\
& A_{2} \rightarrow D A_{3}\left|L A_{2}\right| \lambda \\
& A_{3} \rightarrow D A_{4}\left|L A_{3}\right| \lambda \\
& A_{4} \rightarrow L A_{4} \mid \lambda \\
& L \rightarrow a|b| c|d| e|f| g|h| i|j| k|l| m|n| o|p| q|r| s|t| u|v| w|x| y \mid z \\
& D \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

7. Problem 2(a) on page 56 of the fifth edition, problem $4(\mathrm{a})$ on page 48 of the sixth edition.

There is a dead state, not shown in the figure.
8. Problem $8(\mathrm{~b}), 9(\mathrm{a}), 9(\mathrm{c})$ on page 56 of the fifth edition, problems $8(\mathrm{~b}), 11(\mathrm{a}), 11(\mathrm{c})$ on page 49 of the sixth edition.
vskip 0.1in

9. Problem 26 on page 58 of the fifth edition., problem 28 on page 51 of the sixth edition.

Figure 2.4 shows a DFA with four states, one of which is a dead state. If we apply the algorithm to find the minimal equivalent DFA, we will still have four states. Thus, the answer is no.
10. Problems 6 on page 63 of the fifth edition, problems 3 on page 57 of the sixth edition.

This is the NFA shown in Figure 2-8. Let's call it M.

We now apply the algorithm to convert an NFA into an equivalent DFA. Each state of the DFA is a subset of the set of states of M. Since M has 6 states, there are $2^{6}=64$ such subsets altogether. Fortunately, most of those states are useless, and thus we don't need to include them in our figure. The only ones we show are $\left\{q_{0}\right\},\left\{q_{1}, q_{4}\right\},\left\{q_{2}, q_{5}\right\},\left\{q_{3}, q_{4}\right\},\left\{q_{5}\right\},\left\{q_{4}\right\}$. In the figure, we abbreviate these names as 0,14 , $25,34,5$, and 4.

$$
\sim \rightarrow(0) \xrightarrow{a} \rightarrow(25) \xrightarrow{a} \rightarrow(44) \xrightarrow[a]{a}
$$

Problems 12 on page 64 of the fifth edition, problems 13 on page 57 of the sixth edition.

$$
\begin{gathered}
\delta^{*}\left(q_{0}, 1010\right)=\left\{q_{0}, q_{2}\right\} \\
\delta^{*}\left(q_{1}, 00\right)=\emptyset
\end{gathered}
$$

