University of Nevada, Las Vegas Computer Science 456/656 Spring 2020

 Answers to Assignment 3: Due Thursday February 20, 20201. Consider the Chomsky Normal Form grammar G given below. $S \rightarrow I S$
$S \rightarrow W S$
$S \rightarrow X Y$
$X \rightarrow I S$
$Y \rightarrow E S$
$S \rightarrow a$
$I \rightarrow i$
$W \rightarrow w$
$E \rightarrow e$
(a) Show that G is ambiguous by giving two different leftmost derivations for the string iiaea.

$$
\begin{gathered}
S \Rightarrow I S \Rightarrow i S \Rightarrow i X Y \Rightarrow i I S Y \Rightarrow i i S Y \Rightarrow i i a Y \Rightarrow i i a E S \Rightarrow i i a e S \Rightarrow \text { } \Rightarrow i a e a \\
S \Rightarrow X Y \Rightarrow I S Y \Rightarrow i S Y \Rightarrow i I S Y \Rightarrow i i S Y \Rightarrow i i a Y \Rightarrow i i S E S \Rightarrow i i a E S \Rightarrow i i a e S \Rightarrow \text { iiaea }
\end{gathered}
$$

(b) Use the CYK algorithm to prove that iwiaewwa $\in L(G)$.

2. Work problem 6(b) on page 189 of the sixth edition, $4(\mathrm{~b})$ in Section 7.1 of the fifth edition. XXXXX

b/z/bz
b/b/bb
a/b/ab
b/a/ba
3. Work problem $6(\mathrm{~g})$ on page 189 of the sixth edition, $4(\mathrm{~g})$ in Section 7.1 of the fifth edition.

4. Let L be the language accepted by the PDA diagrammed below. What is L ? You can either describe L in a few words, or give a context-free grammar for L.

The Dyck language, where a and b denote left and right parentheses, respectively. One unambiguous context-free grammar for L is:
$S \rightarrow a S b S \mid \lambda$
5. Let L be the language generated by the following context-free grammar, G. The DPDA, which we call P, shown is actually a parser for G. Its output is a derivation of its input string. Each arc has four labels: "read/pop/push/output." The input alphabet is $\{a, b, c,+, \$\}$, where " $\$$ " is basically an end-of-file symbol, so that the parser can tell that it's reached the end of the input string.

1. $E \rightarrow E+E$ (1) $\mathrm{c} / \mathrm{z} / \mathrm{z} / 5$
2. $E \rightarrow E E$
3. $E \rightarrow a$
4. $E \rightarrow b$
5. $E \rightarrow c$

(a) Show that G is ambiguous.

There are two leftmost derivations for $x+y z \$$:

$$
\begin{gathered}
S \Rightarrow E \$ \Rightarrow E+E \$ \Rightarrow x+E \$ \Rightarrow x+E E \$ \Rightarrow x+y E \$ \$ \Rightarrow x+y z \$ \\
S \Rightarrow E \$ \Rightarrow E E \$ \Rightarrow E+E E \$ \Rightarrow x+E E \$ \Rightarrow x+y E \$ \Rightarrow x+y z \$
\end{gathered}
$$

The first derivation is the one found by the parser.
(c) Despite the ambiguity of G, P is deterministic and will build a unique parse tree for any $w \in L$.

Draw the parse tree for the input $a+a b c+b c \$$.
(b) Walk through the computation of P with input $\mathrm{b}+\mathrm{abc}+\mathrm{bc} \$$. Here is what your answer should look like. I've filled in the first few lines. The output stream grows while the input stream shrinks.

read	pop	push	input	output	state
			$b+a b c+b c \$$		0
b	z	z	$+a b c+b c \$$	4	1
+	z	z	$a b c+b c \$$	4	2
a	z	z	$b c+b c \$$	43	3
b	z	z	$c+b c \$$	4342	3
c	z	z	$+b c \$$	434252	3
+	z	z	$b c \$$	4342521	2
b	z	z	$c \$$	43425214	3
c	z	z	$\$$	4342521452	3
$\$$	z	z		434252145210	4

