
University of Nevada, Las Vegas Computer Science 456/656 Spring 2020

Answers to Assignment 4: Due Tuesday March 24, 2020

1. True or False. T = true, F = false, and O = open, meaning that the answer is not known to science at

this time.

(a) T Every language accepted by an NFA is accepted by some DFA.

(b) F Every language accepted by an NPDA is accepted by some DPDA.

(c) T Every language accepted by an NTM is accepted by some TM.

(d) T The class of Turing machines which allow movement the head to not move during a step is

equivalent to the class of Turing machines with require that the head move at each step.

(e) T The class of PDAs which accept by final state is equivalent to the class of PDAs which accept

by empty stack.

(f) F The class of 2-PDAs, that is, automata with 2 stacks, is equivalent to the class of PDAs with

just one stack.

(g) T The class of C++ programs is equivalent to the class of Turing machines.

(h) T The class of Turing machines with a 2-way infinite tape is equivalent to the class of Turing

machines with a semi-infinite tape.

(i) T The complement of any recursive language is recursive.

(j) F The complement of any recursively enumerable language is recursively enumerable.

2. Prove that a language L is recursive if and only if there is a machine which enumerates L is canonical

order.

Suppose L ⊆ Σ∗ is recursive. Let w1, w2, . . . be the canonical order of Σ∗, which can be easily generated

by a program. The following program enumerates L in canonical order. Note that the condition w ∈ L

can be evaluated because L is decidable.

for(int i = 1; true; i++) // that makes it an infinite loop

if (wi ∈ L)

cout<< wi

Conversely, suppose there is a machine M which enumerates L in canonical order. If L is finite, we

are done, since every finite language is decidable. If L is infinite, let u1, u2, . . . be the members of L in

canonical order. The following program decides whether a given string w is a member of L.

read(w)

for ui for all i in increasing order // obtained by emulation of M

if(ui == w) {return 1; halt;}

else if(ui > w) {return 0; halt;}



Let w1, w2, . . . be the canonical order of Σ∗, which can be easily generated by a program. Let M be a

machine which accepts L. The following program enumerates L, but not necessarily in canonical order.

for(int t = 1; true; t++) // that makes it an infinite loop

for(int i = 1; i ≤ t; i++)

if (M accepts wi in at most t steps)

cout<< wi

If wi is accepted by M it is accepted in k steps for some finite k. Let t = max i, k. Then wi will be

written during the tth iteration of the outer loop.

Conversely, suppose there is a machine M which enumerates L. Let u1, u1, . . . be that enumeration. The

following program accepts L.

read(w)

for ui for all i // obtained by emulation of M

if(ui == w) halt

Note that the program will never halt if w /∈ L.

3. Give an unrestricted grammar which generates L =
{

an
2

: n ≥ 0
}

.

I thought I would find a solution on the internet, but I didn’t. I believe the following grammar

generates L. The variables are S, F,R,A,B,D and the only terminal is a.

S → λ

S → FABR

F → FABB

AB → aBA

Aa → aA

AR → R

F → D

Da → aD

DB → D

DR → λ

Examples. Note that each blue string has 2n− 1 B′s and n2 a′s for some n.

S⇒λ

S⇒FABR⇒FaBAR⇒FaBR⇒DaBR⇒aDBR⇒aDR⇒a

S⇒FABR⇒FaBAR⇒FaBR⇒FABBaBR⇒FaBABaBR

⇒FaBaBAaBR⇒FaBaBaABR⇒FaBaBaaBAR⇒FaBaBaaBR

⇒DaBaBaaBR⇒aDBaBaaBR⇒aDaBaaBR⇒aaDBaaBR

⇒aaDaaBR⇒aaaDaBR⇒aaaaDBR⇒aaaaDR⇒aaaa

Do you see how this works? It is based on the fact that the sum of consecutive odd numbers starting at

1 is always a square. For example 1 = 12, 1 + 3 = 22, and 1 + 3 + 5 = 32. We can also generate a9:

S⇒· · ·⇒FaBR⇒· · ·⇒FaBaBaaBR⇒· · ·⇒FaBaBaaBaaBaaaBR⇒· · ·⇒aaaaaaaaa

2



4. Prove that the halting problem is undecidable. Hint: the proof given in our textbook looks different

from the proof I gave in class, but it is essentially the same. You might find yet another proof in another

textbook or on the internet.

First let’s look at the following “fallacious contradiction.”

(a) Every unicorn has a horn.

(b) No unicorn has a horn.

(a) holds because having a horn is part of the definition of a unicorn, while (b) holds by exhaustive

search, resulting in no unicorn without a horn. Thus, there is a contradiction.

Resolution: the two statements only contradict each other if at least one unicorn exists! Do you see

that?

Now, we’re ready for the proof that HALTis undecidable.

Recall that 〈M〉 is a string which names a TM M , and that HALT = {〈M〉w : M halts with input w}

We define the diagonal language Ld = {〈M〉 : 〈M〉〈M〉 /∈ HALT}.

Claim: Ld is not decidable. The proof of the claim is by contradiction. Assume that Ld is decidable.

Then Ld is accepted by some TM Md. Then, for any TM M ,

〈M〉 ∈ Ld ⇐⇒ 〈M〉〈M〉 /∈ HALT by definition of Ld (1)

〈M〉 ∈ Ld ⇐⇒ 〈Md〉〈M〉 ∈ HALT by definition of Md (2)

〈Md〉 ∈ Ld ⇐⇒ 〈Md〉〈Md〉 /∈ HALT by universal instantiation of (1) (3)

〈Md〉 ∈ Ld ⇐⇒ 〈Md〉〈Md〉 ∈ HALT by universal instantiation of (2) (4)

Since Md exists, equations (3) and (4) contradict each other. We conclude that Ld is not decidable.

We now reduce Ld to the complement of HALT. Let R(〈M〉) = 〈M〉〈M〉 for every Turing machine M .

R is a reduction of Ld to the complement of HALT. Since Ld is not decidable, the complement of HALT

is not decidable. Since the complement of any decidable language is decidable, HALT is not decidable.

3


