
University of Nevada, Las Vegas Computer Science 456/656 Spring 2020

Practice Examination for April 30, 2020
Updated Fri Apr 24 13:55:39 PDT 2020

The entire practice examination is 480 points.

The current closure order extends to April 30. Thus the exam will be take-home.

1. True or False. T = true, F = false, and O = open, meaning that the answer is not known science at this

time. In the questions below, P and NP denote P-time and NP-time, respectively.

(i) F Let L be the language over {a, b, c} consisting of all strings which have more a’s than b’s and

more b’s than c’s. There is some PDA that accepts L.

(ii) T The language {anbn | n ≥ 0} is context-free.

(iii) F The language {anbncn | n ≥ 0} is context-free.

(iv) Deleted.

(v) T The intersection of any three regular languages is context-free.

(vi) T If L is a context-free language over an alphabet with just one symbol, then L is regular.

(vii) There is a deterministic parser for any context-free grammar. F

(viii) T The set of strings that your high school algebra teacher would accept as legitimate expressions

is a context-free language.

(ix) T Every language accepted by a non-deterministic machine is accepted by some deterministic ma-

chine.

(x) T The problem of whether a given string is generated by a given context-free grammar is decidable.

(xi) T If G is a context-free grammar, the question of whether L(G) = ∅ is decidable.

(xii) F Every language generated by an unambiguous context-free grammar is accepted by some DPDA.

(xiii) T The language {anbncndn | n ≥ 0} is in the class P-time.

(xiv) O There exists a polynomial time algorithm which finds the factors of any positive integer, where

the input is given as a binary numeral.

(xv) F Every undecidable problem is NP-complete.

(xvi) F Every problem that can be mathematically defined has an algorithmic solution.

(xvii) F The intersection of two undecidable languages is always undecidable.

(xviii) T Every NP language is decidable.

(xix) T The intersection of two NP languages must be NP.

(xx) Deleted.

(xxi) O NC = P.

(xxii) O P = NP.

(xxiii) O NP = P-space

(xxiv) O P-space = EXP-time

(xxv) O EXP-time = EXP-space

(xxvi) F NC = EXP-space

(xxvii) T The traveling salesman problem (TSP) is NP-complete.

(xxviii) T The knapsack problem is NP-complete.

(xxix) T The language consisting of all satisfiable Boolean expressions is NP-complete.

(xxx) T The Boolean Circuit Problem is in P.

(xxxi) T The Boolean Circuit Problem is in NC.

(xxxii) Deleted.

(xxxiii) T The language consisting of all strings over {a, b} which have more a’s than b’s is context-free.

(xxxiv) T 2-SAT is P-time.

(xxxv) O 3-SAT is P-time.

(xxxvi) T Primality is P-time.

(xxxvii) T There is a P-time reduction of the halting problem to 3-SAT.

(xxxviii) T There is a P-time reduction of the partition problem to 3-SAT.

(xxxix) T Every context-free language is in P.

(xl) T Every context-free language is in NC.

(xli) T Addition of binary numerals is in NC.

(xlii) O Every context-sensitive language is in P.

(xliii) F Every language generated by a general grammar is recursive.

(xliv) F The problem of whether two given context-free grammars generate the same language is decidable.

(xlv) T The language of all fractions (using base 10 numeration) whose values are less than π is decidable.

(A fraction is a string. “314/100” is in the language, but “22/7” is not.)

(xlvi) T There exists a polynomial time algorithm which finds the factors of any positive integer, where

the input is given as a unary (“caveman”) numeral.

2

(xlvii) F For any two languages L1 and L2, if L2 is undecidable and there is a recursive reduction of L1

to L2, then L1 must be undecidable.

(xlviii) F If P is a mathematical proposition that can be written using string of length n, and P has a

proof, then P must have a proof whose length is O(22
n

).

As you may have learned, there is a formal language which can be used to write any mathematical

proposition as well as any proof of any mathematical proposition, and an algorithm exists that can

check the correctness of such a proof. In 1978, Jack Milnor https://en.wikipedia.org/wiki/John Milnor

told me that in the future no proof will be accepted unless it can be verified by a computer.

(xlix) Deleted.

(l) F Every bounded function is recursive.

(li) O If L is NP and also co-NP, then L must be P.

(lii) T Recall that if L is a class of languages, co-L is defined to be the class of all languages that are

not in L. Let RE be the class of all recursively enumerable languages. If L is in RE and also L is

in co-RE , then L must be decidable.

(liii) T Every language is enumerable.

(liv) F If a language L is undecidable, then there can be no machine that enumerates L.

(lv) T There is a non-recursive function which grows faster than any recursive function.

(lvi) T There exists a machine1 that runs forever and outputs the string of decimal digits of π (the

well-known ratio of the circumference of a circle to its diameter).

There are several known series that converge to π. Using one of these, it is easy to write the

program. I’ve done it. The only problem is that any physical machine will eventually run out of

memory. Here is one series: 1

1
− 1

3
+ 1

5
− 1

7
+ · · · converges to π

4
.

(lvii) T There is a machine which outputs the correct answer to the P = NP question.

The correct answer to that problem consists of just one string, which is either “0” or “1” Design

a machine M1 which simply outputs “1” when it is turned on, and a machine M0 which simply

outputs “0” when you turn it one. One of those two machines outputs the correct answer to the

P = NP question, the machine exists. The fact that we don’t know whether it’s M0 or M1 is

irrelevant.

(lviii) F For every real number x, there exists a machine that runs forever and outputs the string of

decimal digits of x.

There are uncountably real numbers, and there are only countably many machines.

1As always in automata theory, “machine” means abstract machine, a mathematical object whose memory and running time

are not constrained by the size and lifetime of the known (or unknown) universe, or any other physical laws. If we want to discuss

the kind of machine that exists (or could exist) physically, we call it a “physical machine.”

3

(lix) Deleted

(lx) O Rush Hour, the puzzle sold in game stores everywhere, generalized to a board of arbitrary size,

is NP

Rush Hour has been known to be P-space complete since 2002.

(lxi) O The regular expression equivalence problem is NP.

The problem is known to be P-space complete.

(lxii) F The intersection of two context-free languages is always context-free.

(lxiii) T The intersection of two regular languages is always regular.

(lxiv) T The intersection of a context-free language and a regular language is always context-free.

If M1 is a PDA which accepts L1 and M2 is a DFA which accepts L2, the Cartesian product machine

M1 ×M2 has only one stack, and can thus be rewritten as a PDA, and accepts L1 ∩ L2.

(lxv) F
{

aibjcidj : i, j ≥ 0
}

is context-free.

(lxvi) T
{

aibicjdj : i, j ≥ 0
}

is context-free.

(lxvii) T
{

aibjcjdi : i, j ≥ 0
}

is context-free.

2. [10 points] Fill in the blank. If L1 is undecidable and if R is a reduction of L1 to L2 and if R is

recursive, then L2 is undecidable.

3. [20 points] State the pumping lemma for context-free languages.

For any context-free language L, there exists a positive integer p, called a pumping length of L, such that

for any w ∈ L such that |w| ≥ p there exist strings u, v, x, y, z such that the following four conditions

hold:

(a) w = uvxyz

(b) |vxy| ≤ p

(c) |vy| ≥ 1

(d) for any integer i ≥ 0, uvixyiz ∈ L

4. [20 points] Use the pumping lemma for context-free languages to prove that the language L = {anbncn}

is not context-free.

Proof: By contradiction. Assume L is context-free. Then by the pumping lemma L has a pumping

length p ≥ 1.

Let w = apbpcp Then w ∈ L and |w| = 3p ≥ p. Pick string u, v, x, y, z such that the four final conditions

given in the pumping lemma hold.

Any substring of w which contains at least one a and one c must have length at least p+ 2. Thus, vxy

either contains no a or contains no c. Without loss of generality, vxy contains no a.

4

Pick i = 0. Then uvixyiz = uxz ∈ L. Since neither v nor y contains any a, the number of a’s in uxz

must be the same as the number of a’s in w, which is p. Since uvz ∈ L, {uvz} = 3p. It follos that v and

y are both the empty string, contradiction.

5. [20 points] Prove that a language is recursively enumerable if and only if it is accepted by some machine.

If a language L is recursively enumerable, it is accepted by some machine.

Proof: There is a machine which enumerates L. Let w1, w2, . . . be that enumeration. Let P be the

following program:

read(w)

for all i starting from 1

if(w = wi) output ”1”

If P outputs 1, then w = wi ∈ L for some i, hence w ∈ L. Conversely, if w ∈ L, then w = wi for some i

because w1, . . . is an enumeration of L, hence P outputs 1. Thus P accepts L.

If L is accepted by some machine, then L is recursively enumerable.

Proof: Let M be a machine which accepts L. Let Σ be the alphabet of L. Let w1, w2, . . . be an

enumeration of Σ∗. Let P be the following program:

for t = 1 to ∞

for i = 1 to t

if (M accepts wi within t steps)

output wi

P runs forever, but the inner loop is finite for each t. Only strings accepted by M are output. Conversely,

if w is accepted by M , then w = wi for some i, and M accepts w in k steps for some k. Then w will be

output during the tth iteration of the outer loop, where t = max {i, k}.

6. [20 points] Prove that the halting problem is undecidable.

7. [20 points] Give a definition of each of these NP-complete languages/problems.

(a) SAT = the set of all satisfiable Boolean expressions.

(b) 3-SAT = the set of all satisfiable Boolean expressions which are in conjunction normal form where

each clause has three terms. An expression must be the conjunction of clauses, and each clause

must be the disjunction of three terms, and each term must be either a variable or the negation of

a variable.

(c) The independent set problem is whether a given graph G has an independent set of k vertices for

some given k. We say that a set of vertices I is independent if no two members of I have an edge

in common.

(d) The subset sum problem is whether there is a subset of a given set of weighted items whose total

weight equals a given number..

(e) The partition problem is whether a given set of weighted items can be divided into two subsets of

equal total weight.

5

8. [20 points] Give a general (unrestricted) grammar for the language consisting of all strings of 1’s of

length a power of 2, that is,
{

12
n

: n ≥ 0
}

We will use variables S,L,R,D where S is the start symbol and the productions are

S→L1R

L→LD

D1→11D

DR→R

L→ λ

R→ λ

9. [20 points] Give one of these polynomial time reductions (your choice).

(a) 3-SAT to Independent Set.

(b) Independent Set to Subset Sum

(c) Subset Sum to Partition

10. [20 points] Prove that the context-free grammar equivalence problem is co-RE.

I have already made the proofs of 6, 9, and 10 available. Review them.

6

