Computer Science 456/656 Spring 2020

Second Examination April 30, 2020

The entire examination is 205 points.

Name:

\qquad
The exam is take-home, open book, open notes, open internet. You must finish by midnight of April 30 . Scan and email the completed examination paper to your TA, Pradip Marahajan. The email must have an April 30 time stamp.

1. True or False. [5 points each] $\mathrm{T}=$ true, $\mathrm{F}=$ false, and $\mathrm{O}=$ open, meaning that the answer is not known to science at this time.
i -------- Every subset of a regular language is regular.
ii \qquad EXP-TIME \subseteq EXP-SPACE.
iii \qquad There exists a context-sensitive language which is \mathcal{P}-SPACE complete.
iv \qquad Every finite language is regular.
v \qquad The language $\left\{a^{i} b^{j} a^{j} b^{i}: i, j \geq 0\right\}$ is context-free.
vi \qquad Any languge generated by an unrestricted grammar is recursively enumerable.
vii \qquad Every polynomial time language is context-free.
viii \qquad If L is in \mathcal{P}-space, there is a reduction of L to the regular expression equivalence problem.
ix \qquad The union of two undecidable languages is always undecidable.
x \qquad The union of two recursively enumerable languages is always recursively enumerable.
xi \qquad The union of two co-RE languages is always co-RE. Hint: Think!
xii -------- $\mathcal{N C}=c o-\mathcal{N C}$. Hint: Think!
xiii \qquad The set of all regular expressions for regular languages over the alphabet $\{a, b\}$ is a contextfree language.
xiv \qquad Various websites, such as https://www.youtube.com/watch? v=bQnjbDHefgc give solutions to various instances of RUSH HOUR. If there is a solution to a particular instance of RUSH HOUR, that solution can always be explained in polynomial time.
xv --------The factoring problem for an integer written in binary is both $\mathcal{N P}$ and co- $\mathcal{N} \mathcal{P}$.

Name:

\qquad
xvi \qquad If someone somewhere on the Earth publishes a correct proof that the partition problem is in \mathcal{P}-TIME, then it will be known that $\mathcal{P}=\mathcal{N} \mathcal{P}$.
xvii \qquad If someone somewhere on the Earth publishes a correct proof that the factoring problem for binary numerals is in \mathcal{P}-Time, then it will be known that $\mathcal{P}=\mathcal{N} \mathcal{P}$.
xviii \qquad $\mathcal{N C}=\mathcal{P}$-SPACE
xix \qquad co- $\mathcal{N P} \subseteq \mathcal{P}$-space.
2. Fill in the blanks. [10 points each blank.]
(a) If $L \subseteq \Sigma^{*}$ is $\mathcal{N P}$ time, there is a constant k and a deterministic machine V such that, for string $w \in \Sigma^{*}$, we have $w \in L$ if and only if there is a string c, called a \qquad for w, such that $|c| \leq|w|^{k}$ and V accepts the string $c w$ within $|w|^{k}$ steps.
(b) The practicality of the RSA one-way encryption system depends on the assumption (which has not been verified) that the \qquad problem cannot be solved in polynomial time.
(c) $\mathcal{N C}$ is the class of languages which can be decided in \qquad time using polynomially many processors.
3. [20 points] Every context-free language has a minimum pumping length. For example, the minimum pumping length of $\left\{a^{n} b^{n}: n \geq 0\right\}$ is 2 .

The language $L=\left\{a^{n} b^{m} c d e^{n}: n, m \geq 0\right\}$ is context-free.
(a) Find the minimum pumping length of L. Call it p. \qquad
(b) For every string $w \in L$ of length at least p, there are strings u, v, x, y, z such that $w=u v x y z$ and three other conditions are satisfied. Find the strings u, v, x, y, z if $w=a a b c d e e$.

Name:

4. [20 points] Give a polynomial time reduction of 3-SAT to the independent set problem.

Name:

5. [20 points] Prove that the halting problem is undecidable.

Name:

6. [20 points] Prove that the language $L=\left\{a^{n} b^{m} c^{m} d^{n}: n, m \geq 0\right\}$ is context-free by giving a context-free grammar for L.
