University of Nevada, Las Vegas Computer Science 456/656 Spring 2021 Answers to Assignment 3 due Tuesday March 2, 2021

Name:_____

- 1. True or False. 5 points each. T = true, F = false, and O = open, meaning that the answer is not known science at this time.
 - (a) **F** The context-free grammar equivalence problem is decidable.
 - (b) **T** The context-free grammar equivalence problem is $co-\mathcal{RE}$.
 - (c) **T** If L_1 is a regular language and L_2 is a context-free language, then $L_1 \cap L_2$ is context-free.
 - (d) **T** If there is a recursive reduction of L_1 to L_2 , where L_1 is an undecidable language, then L_2 must be undecidable.
 - (e) **O** The factoring problem is in \mathcal{P} .
 - (f) **T** If L is a recursive language, there must be a machine which enumerates L in canonical order.
 - (g) **T** If there is a machine which enumerates a language L in canonical order, then L must be recursive.
- 2. State the pumping lemma for regular languages.

If L is a regular language, there is an integer p such that for any $w \in L$, if $|w| \ge p$, there exist strings x, y, z such that:

- (a) w = xyz
- (b) $|xy| \le p$
- (c) $|y| \ge 1$
- (d) For any integer $i \ge 0, xy^i z \in L$
- 3. Use the pumping lemma to prove that the Dyck language is not regular.

Let D be the Dyck language, and suppose D is regular. Let p be the pumping length of D, and let $w = a^p b^p$, which is a member of D of length at least p. Then there exist strings x, y, z such that

- (a) $a^p b^p = xyz$
- (b) $|xy| \le p$
- (c) $|y| \ge 1$
- (d) For any $i \ge 0, xy^i z \in D$.

Note that |w| = 2p. From (a) and (b), we have that xy is a substring of the first p symbols of w, hence $y = a^k$ for some $k \le p$. From (c), we conclude that xy is not the empty string, hence $k \ge 1$. Let i = 0. From (d), we conclude that $xy^0z = a^{p-k}b^p \in D$, which is impossible since every member of D has the same number of a's as b's. Contradiction. Thus D is not regular.

- 4. Consider the Chomsky Normal Form grammar G given below.
 - $\begin{array}{l} S \rightarrow IS \\ S \rightarrow WS \\ S \rightarrow XY \\ X \rightarrow IS \\ Y \rightarrow ES \\ S \rightarrow a \\ I \rightarrow i \\ W \rightarrow w \end{array}$
 - $E \to e$
 - (a) Show that G is ambiguous by giving two different **leftmost** derivations for the string *iiaea*.

$$S \Rightarrow IS \Rightarrow iS \Rightarrow iXY \Rightarrow iISY \Rightarrow iiSY \Rightarrow iiaY \Rightarrow iiaES \Rightarrow iiaeS \Rightarrow iiaea$$
$$S \Rightarrow XY \Rightarrow ISY \Rightarrow iSY \Rightarrow iISY \Rightarrow iiSY \Rightarrow iiaY \Rightarrow iiaES \Rightarrow iiaeS \Rightarrow iiaea$$

(b) Use the CYK algorithm to prove that $iwiaewwa \in L(G)$.

 $iiaea \in L(G)$ because $V_{1,n}$ contains the start symbol, where n = |iwiaewwa| = 8

5. Let L be the language accepted by the PDA diagrammed below. What is L? You can either describe L in a **few** words, or give a context-free grammar for L.

2

02

13

3

13

1

Ø

Ø

02

Ø

02

3

L is the Dyck language, with context-free grammar $S \rightarrow aSbS \,|\, \lambda$

6. Find a minimal DFA equivalent to the NFA shown below.

 $\{0\}$ and $\{0,2\}$ are equivalent, and $\{1\}$ and $\{1,3\}$ are equivalent. Thus, the minimal DFA has five states, including the dead state. 7. Give a context-sensitive grammar for $\{a^n b^n c^n d^n : n \ge 1\}$

There are infinitely many correct answers. This one is not the shortest, but it is easy to understand.

$S \rightarrow abcd \mid Aabcd$	A is a messenger, which doubles the first a then					
$Aa \rightarrow aaB \mid AaaB$	changes to B , which doubles the first b then					
$Ba \rightarrow aB$	changes to C , which doubles the first c then					
$Bb \rightarrow bbC$	sharper to D which doubles the first d and then					
$Cb \rightarrow bC$	changes to D , which doubles the first a and then					
$C_{\alpha} \rightarrow c_{\alpha} D$	disappears.					
$Cc \rightarrow ccD$	A optionally generates a new messenger, so the					
$Dc \rightarrow cD$	doubling can occur any number of times					
$Dd \rightarrow dd$	ababiling call occur any number of times.					

8. Fill in the following table, showing which operations are closed for each class of languages. In each box, write **T**, **F**, or **O**.

language class	union	intersection	concatenation	Kleene closure	complementation
\mathcal{NC}	Т	Т	Т	Т	Т
regular	Т	Т	Т	Т	Т
context-free	Т	F	Т	Т	F
\mathcal{P}	Т	Т	Т	Т	Т
\mathcal{NP}	Т	Т	Т	Т	0
$\operatorname{co-}\mathcal{NP}$	Т	Т	Т	Т	0
recursive	Т	Т	Т	Т	Т
\mathcal{RE}	Т	Т	Т	Т	F
$\mathrm{co} extsf{-}\mathcal{R}\mathcal{E}$	Т	Т	Т	Т	F
undecidable	F	F	F	F	Т

9. Prove that the halting problem is undecidable.

The proof is by contradiction. Let L_{HALT} be the language of all $\langle M \rangle x$ such that M halts with input x. Assume that the L_{HALT} is decidable.

Let $L_D = \{ \langle M \rangle : \langle M \rangle \langle M \rangle \notin L_{HALT} \}$, the diagonal language. L_D is decidable since L_{HALT} is decidable. Let M_D be a machine which decides L_D .

Since M_D accepts L_D , $\langle M_D \rangle \in L_D$ if and only if M_D halts with input $\langle M_D \rangle$.

By definition of L_D , $\langle M_D \rangle \in L_D$ if and only if M_D does not halt with input $\langle M_D \rangle$.

Contradiction. Thus, L_{HALT} is not decidable.