University of Nevada, Las Vegas Computer Science 456/656 Spring 2021
Answers to Assignment 4: Due Tuesday March 23, 2021

1. Which of these languages (problems) are known to be \(\text{NP}-\text{complete} \)? If a language, or problem, is known to be \(\text{NP}-\text{complete} \), fill in the first circle. If it is either known not be \(\text{NP}-\text{complete} \), or if whether it is \(\text{NP}-\text{complete} \) is not known at this time, fill in the second circle.

- Boolean satisfiability.
- 2SAT.
- 3SAT.
- 4SAT.
- Subset sum problem.
- Generalized checkers, i.e. on a board of arbitrary size.
- Independent set problem.
- Traveling salesman problem.
- Regular expression equivalence.
- C++ program equivalence.
- Rush Hour: https://www.youtube.com/watch?v=HI0rlp7tiZ0
- Circuit value problem, CVP.
- Regular grammar equivalence.
- Dominating set problem.
- Partition.

2. State the pumping lemma for regular languages.

For any regular language \(L \), there is an integer \(p > 0 \), which we call the pumping length of \(L \), such that, for any string \(w \in L \) of length at least \(p \), there exist strings \(x, y, z \) such that the following four conditions hold.

1. \(w = xyz \),
2. \(|xy| \leq p\),
3. \(y \) is not empty,
4. For any integer \(i \geq 0 \), \(xy^iz \in L \).

3. Use the pumping lemma to prove that the language \(L \) generated by the grammar given below is not regular.

\[
\begin{align*}
S & \rightarrow iS \\
S & \rightarrow iSeS \\
S & \rightarrow wS \\
S & \rightarrow a
\end{align*}
\]

By contradiction. Assume \(L \) is regular. Pick \(p \) a pumping length of \(L \). Let \(w = i^p a(ce)^p \), a member of \(L \). Note that \(|w| \geq p\). By the pumping lemma, there exist strings \(x, y, z \) such that the following four conditions hold:
1. \(w = xyz \),
2. \(|xy| \leq p \),
3. \(y \) is not empty,
4. For any integer \(i \geq 0 \), \(xy^i z \in L \).

Since \(xyz = w \) and \(|xy| \leq p \), \(xy \) is a substring of \(i^p \), hence \(y = i^k \) for some \(k > 0 \). By 4., \(xy^0 z = xz \in L \); \(xz = i^{p-k}a(ae)^p \) which is not in \(L \), since no member of \(L \) can have fewer \(i \)'s than \(e \)'s.

4. Let \(L \) be the language over \(\{ a, b \} \) consisting of all strings which have the same number of \(a \)'s as \(b \)'s, such as \(aabb, abba, aaabbb, bbbaaa, \ldots \). Design a PDA which accepts \(L \).

Since you can’t easily draw figures during a lockdown browser exam, I will describe the states and transitions of PDA \(M \) in text.

\(M \) has two states, the start state, and a second state which is final. We let \(z \) be the bottom up stack symbol. There are six transitions from the start state to its elf. The labels of these transitions are: \(z/a/az \), \(z/b/bz \), \(a/a/aa \), \(a/b/\lambda \), \(b/a/\lambda \), and \(b/b/bb \). There is one transition from the start state to the second state, with label \(z/\lambda/\lambda \).

5. Give a context-sensitive grammar for \(\{ a^{2^n} \} : n \geq 0 \)

There are many correct answers. I think this one works:

\[
S \rightarrow a|aa|aaa|LLaR \\
L \rightarrow LA|A \\
Aa \rightarrow aaA \\
AaR \rightarrow aaR \\
LAa \rightarrow aaA \\
AaaR \rightarrow aaaa
\]

6. Give a polynomial time reduction of the subset sum problem to partition.

This is done in a posted document.

7. Give a polynomial time reduction of 3SAT to the independent set problem.

This is done in a posted document.

8. Prove that a language is recursively enumerable, \(R\Sigma \), if and only if it is accepted by some machine.

Suppose a language \(L \) is recursively enumerable by some machine \(M_1 \). Then \(L \) is accepted by some machine \(M_2 \)

Let \(w_1, w_2, \ldots \) be the output of \(M_1 \), an enumeration of \(L \). Let \(M_2 \) be a machine equivalent to the following program.

- Read \(w \).
- For \(i \) from 1 to \(\infty \)
- If \(w_i = w \) Write “Accept”

Then \(M_2 \) accepts \(L \).
Conversely, suppose a language L over an alphabet Σ is accepted by a machine M_1. Let w_1, w_2, \ldots be an enumeration of Σ^* in canonical order. Let M_2 be a machine equivalent to the following program.

For t from 1 to ∞
 For i from 1 to t
 If M_1 accepts w_i within t steps
 Write w_i

Since every $w \in L$ is equal to w_i for some i, and is accepted by M_1 in some number of steps, say t steps, w will be written by M_2 during the j^{th} iteration of the outer loop, where $j = \max(i, t)$.