University of Nevada, Las Vegas Computer Science 456/656 Spring 2021 Answers to Assignment 5: Due Thursday April 1, 2021

- 1. Consider G, the following context-free gammar with start symbol E. Stack states are indicated.
 - 1. $E \to E_{1,11} +_2 E_3$
 - 2. $E \to E_{1,11} E_5$
 - 3. $E \to E_{1,3,5,11} *_6 E_7$
 - 4. $E \rightarrow -_8 E_9$
 - 5. $E \to ({}_{10}E_{11})_{12}$
 - 6. $E \rightarrow x_{13}$

What follows is an ACTION table followed by a GOTO table for an LALR parser for G. Which entry guarantees that negation has higher priority than multiplication?

The entry in column "*" of row 9. The precedence is indicated by the fact that we reduce before we shift the multiplication sign.

	x	+	_	*	()	\$	E
0	s13		$\mathbf{s8}$		s10			1
1		s2	s4	s6			halt	
2	s13		$\mathbf{s8}$		s10			3
3		r1	r1	$\mathbf{s6}$		r1	r1	
4	s13		$\mathbf{s8}$		s10			5
5		r2	r2	$\mathbf{s6}$		r2	r2	
6	s13		$\mathbf{s8}$		s10			7
7		r3	r3	r3		r3	r3	
8	s13		$\mathbf{s8}$		s10			9
9		r4	r4	r4		r4	r4	
10	s13		$\mathbf{s8}$		s10			11
11		s2	s4	$\mathbf{s6}$		s12		
12		r5	r5	r5		r5	r5	
13		r6	r6	r6		r6	r6	

- 2. State the pumping lemma for context-free languages. For any context-free language L, there is an integer p > 0, the *pumping length* of L, such that for any $w \in L$ of length at least p, there exist string u, v, x, y, z such that the following four conditions hold.
 - 1. w = uvxyz.
 - 2. $|vxy| \leq p$.
 - 3. v and y are not both empty.
 - 4. For any integer $i \ge 0$, $uv^i xy^i z \in L$.

3. Use the pumping lemma to prove that $L = \{a^j b^k c^\ell : 0 \le j \le k \le \ell\}$ is not context-free.

Proof by contradiction. Suppose L is context-free. Let p be the pumping length of L. Let $w = a^p b^p c^p$ which is in L, and |w| = 3p > p. Then, by the pumping lemma, there are strings u, v, x, y, z such that the four conditions hold:

- 1. w = uvxyz.
- 2. $|vxy| \leq p$.
- 3. v and y are not both empty.
- 4. For any integer $i \ge 0$, $uv^i xy^i z \in L$.

We observe that any substring of w that contains both an a and a c must have length at least p + 2. Therefore vxy either contains no a or no c.

Case 1. vxy contains no a. Then neither v nor y contains a. By the pumping lemma, $w' = uv^2xy^2z \in L$. Since neither v nor y contains a, there are exactly p a's in w'. Since $w' \in L$, that means that w' must contain p b's and p c's. However, w' is longer than w by |v| + |y|, which is greater than zero. it follows that |w'| > 3p, contradiction.

Case 2. vxy contains no c. The proof is similar to that of Case 1.

4. Consider the following problem. Given binary numerals $\langle u \rangle$ and $\langle v \rangle$ of length *n*, decide whether u < v. Give an \mathcal{NC} algorithm for solving this problem.

The algorithm uses divide-and-conquer, in a manner reminiscent of mergesort. Let T(n) be the time complexity of the problem, and let W(n) be the *work* complexity, meaning the total number of steps executed for an instance of size n. Without loss of generality, we assume that n is a power of 2. (We can always pad each numeral with leading zeros to achieve this.)

The numeral $\langle u \rangle$ is the concatenation of two numerals of length n/2. Let $u_L = \lfloor \frac{u}{n/2} \rfloor$ and $u_R = u \mod (n/2)$. (Recall that the C++ operator % is an implementation of **mod**.) Then $\langle u_L \rangle$ and $\langle u_R \rangle$ are the left and right halves of the string $\langle u \rangle$. (For example, if n = 8 and $\langle u \rangle = 10011110$, then $\langle u_L \rangle = 1001$ and $\langle u_R \rangle = 1110$.)

Our \mathcal{NC} algorithm is as follows:

If n = 1, that is u and v each have one digit, we need only O(1) steps.

If $n = 2^k$ for k > 0, answer the following two sub-questions in parallel:

- 1. Is u_L less than, equal to, or greater than v_L ?
- 2. Is u_R less than, equal to, or greater than v_R ?

If $u_{malyL} < v_L$, then u < v. If $u_{malyL} > v_L$, then u < v. If $u_{malyL} = v_L$, the answer is given by sub-question 2.

We now do the time and work analysis. Our two recurrences are

$$W(n) = 2W(n/2) + O(1)$$

T(n) = T(n/2) + O(1) since the two subproblems are done simultaneously.

Solving these recurrences, we have that the time complexity is $O(\log n)$, while the work complexity is O(n). Thus, the algorithm is \mathcal{NC} .

- 5. Prove that a language is enumerable in canonical order by some machine if and only if it is decidable. Suppose a language L over an alphabet Σ is accepted by a machine M_1 . Let M_2 be a machine which:
 - 1. Generates the canonical enumeration of $\Sigma^*, w_1, w_2 \dots$
 - 2. For each w_i , emulates M_1 and decides whether $w_i \in L$.
 - 3. Writes w_i if and only if $w_i \in L$.

Conversely, suppose there is a machine M_1 which enumerates L in canonical order. There are two cases.

- If L is finite, then L clearly decidable.
- If L is infinite, M_2 decides L by the following method:
- 1. Read a string w.
- 2. Emulate M_1 , until a string w_i is found where $w_i \ge w$ in the canonical order.
- 3. If $w_i = w$, then accept w. Otherwise, reject w.