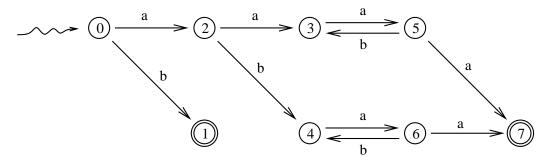
Answers to Practice for the Final Examination: Part I

1. Design a minimal DFA equivalent to the DFA shown below.



The start state is 0, the only final state is $\{1,7\}$, \emptyset is a dead state, and the transition table is:

	a	b
{0}	{2}	$\{1, 7\}$
$\{1,7\}$	Ø	Ø
{2}	${3,4}$	$\{3, 4\}$
$\{3,4\}$	$\{5, 6\}$	Ø
$\{5, 6\}$	$\{1, 7\}$	$\{3, 4\}$

2. Let L be the language consisting of all strings over the binary alphabet which contain the substring 011. Design a minimal DFA which accepts L.

There are four states, 0, 1, 2, and 3. The start state is 0 and the only final state is 3. The transition table is:

	0	1
0	1	0
1	1	2
2	1	3
3	3	3

3. Design a DPDA which accepts the language over $\{a,b\}$ consisting of all strings which have equal numbers of each symbol. (For example, ab, ba, abba, and abbaab.)

There are two states. The start state is 0 and 1 is a final state. There is a self-loop at state 0 labeled by the six triples: z/a/az, z/b/bz, a/a/aa, $a/b/\lambda$, $b/a/\lambda$, b/b/bb. There is an arc from state 0 to state 1 labeled by the triple $z/\lambda/z$.

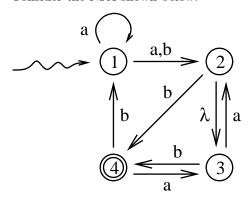
4. Let L be the language of all regular expressions over $\{a, b\}$. Give a context-free grammar for L.

1

Let E be the start state. The productions are:

$$\begin{split} E &\to E + E|EE|E^*|(E) \\ E &\to a|b| \text{``}\lambda\text{''}| \text{``}\emptyset\text{''} \end{split}$$

5. Consider the NFA shown below.



(i) Write a transition table for a minimal DFA equivalent to that NFA.

The start state is $\{1\}$. The final states are those sets which contain 4.

	a	b
{1}	$\{1, 2, 3\}$	$\{2, 3\}$
$\{2, 3\}$	$\{2, 3\}$	{4}
$\{1, 2, 3\}$	$\{1, 2, 3\}$	$\{2, 3, 4\}$
{4}	$\{2, 3\}$	{1}
$\{2, 3, 4\}$	$\{2, 3\}$	$\{1, 4\}$
$\{1,4\}$	$\{1, 2, 3\}$	$\{1, 2, 3\}$

(ii) Write a regular expression which describes the language accepted by that NFA.

$$a^*(a+b)(a^*b)(a(a+b)a^*b+aa^*b)^*$$

(iii) Give a regular grammar which generates the language accepted by that NFA.

The start symbol is S. The productions are:

$$S \to aS|aA|bA$$

$$A \to B|b\,C$$

$$B \to aA|aB|bC$$

$$C \to aB|bS|\lambda$$

However, a regular grammar is not allowed to have just a variable on the right hand side. Thus, we must delete $A \to B$ and insert two more productions:

$$S \to aS|aA|bA|aB|bB$$

$$A \to aA|bC$$

$$B \rightarrow aA|aB|bC$$

$$C \to aB|bS|\lambda$$