Using the Lock-down Browser

You will have to answer each question using just typing Here are examples.

I. Design an NFA which accepts the language of all strings over a, b which have three consecutive a's.

Your answer:

States are 0, 1, 2, 3 where 3 is the only final state.

delta(0,a) = 0,1 delta(0,b) = 0 delta(1,a) = 2 delta(1,b) = emptyset delta(2,a) = 3 delta(2,b) = emptyset delta(3,a) = 3 delta(3,b) = 3

II. Give a minimal DFA equivalent to the following DFA:

Your answer: States 1 and 2 are equivalent. the minimal DFA has states 0, 1/2, 3, and emptyset (dead state). The transition function of the minimal DFA is:

```
delta(0,a) = 1/2
delta(0,b) = empty set (dead state)
delta(1/2,a) = 3
delta(1/2,b) = 1/2
delta(3,a) = 1/2
delta(3,b) = 1/2
```

III. Give a regular expression for the language of all strings over $\{a, b\}$ with three consecutive a's.

Your answer:

```
(a+b)*aaa(a+b)*
```

IV. Let $L = \{a^n b^n \mid n \ge 0\}$. Design a PDA which accepts L.

Your answer:

Three states, 0, 1, and 2 2 is the only final state. The bottom of stack

symbol is z. There is a self-loop at state 0. The labels on that loop are: z/a/az, a/a/aa. There is an arc from 0 to 1. The labels on that arc are: z/lambda/z,a/lambda/a. There is a self-loop at state 1. The label on that loop is: a/b/lambda. There is an arc from 1 to 2. The label on that arc is z/lambda/lambda. V. Consider the following CNF grammar:

 $S\to AB$ $A\to a$ $B\to b$ Use the CYK algorithm to prove that ab is in the language generated by the grammar.

Your answer:

V[1,1] = A, V[2,2] = B, V[1,2] = S

Therefore ab is generated by the grammar.

VI. Write exponents using the carat symbol. That is, a^2 should be written a²

Practice Exam

- 1. True or False. T = true, F = false, and O = open, meaning that the answer is not known science at this time. In the questions below, \mathcal{P} and \mathcal{NP} denote \mathcal{P} -TIME and \mathcal{NP} -TIME, respectively.
 - (i) Let L be the language over $\{a, b, c\}$ consisting of all strings which have more a's than b's and more b's than c's. There is some PDA that accepts L.
 - (ii) _____ The language $\{a^n b^n \mid n \ge 0\}$ is context-free.
 - (iii) _____ The language $\{a^n b^n c^n \mid n \ge 0\}$ is context-free.
 - (iv) _____ The language $\{a^i b^j c^k \mid j = i + k\}$ is context-free.
 - (v) _____ The intersection of any three regular languages is regular.
 - (vi) _____ The intersection of any two context-free languages is context-free.
 - (vii) _____ If L is a language and L^* is regular, then L must be regular.
 - (viii) _____ If L is a context-free language over an alphabet with just one symbol, then L is regular.
 - (ix) _____ The set of strings that your high school algebra teacher would accept as legitimate expressions is a context-free language.

- (x) _____ Every language accepted by a non-deterministic machine is accepted by some deterministic machine.
- (xi) _____ Every context-free language is generated by some unambigous context-free grammar.
- (xii) _____ The problem of whether a given string is generated by a given context-free grammar is decidable.
- (xiii) _____ If G is a context-free grammar, the question of whether $L(G) = \emptyset$ is decidable.
- (xiv) _____ Every language generated by an unambiguous context-free grammar is accepted by some DPDA.
- (xv) _____ The language $\{a^n b^n c^n d^n \mid n \ge 0\}$ is decidable.
- (xvi) ______ Every problem that can be mathematically defined has an algorithmic solution.
- (xvii) $\mathcal{P} = \mathcal{NP}$.
- (xviii) _____ There exists a polynomial time algorithm which finds the factors of any positive integer, where the input is given as a binary numeral.
- (xix) _____ The language consisting of all strings over $\{a, b\}$ which have more a's than b's is context-free.
- (xx) _____ Every context-free language is in \mathcal{P} .
- (xxi) _____ Every context-sensitive language is in \mathcal{P} .
- (xxii) _____ Every language generated by a general grammar is decidable.
- (xxiii) _____ The problem of whether two given context-free grammars generate the same language is decidable.
- (xxiv) _____ Every bounded function is recursive (that is, computable).
- (xxv) _____ Recall that if \mathcal{L} is a class of languages, co- \mathcal{L} is defined to be the class of all languages that are not in \mathcal{L} . Let \mathcal{RE} be the class of all recursively enumerable languages. If L is in \mathcal{RE} and also L is in co- \mathcal{RE} , then L must be decidable.
- (xxvi) _____ If a language L is both \mathcal{NP} and co- \mathcal{NP} , L must be \mathcal{P} .
- (xxvii) _____ Every language is enumerable. That means, either L is finite or there is a one-to-one function from the positive integers to L.
- (xxviii) _____ There is a non-recursive function which grows faster than any recursive function. (Recursive function means computable function.)
- (xxix) _____ There exists a machine¹ that runs forever and outputs the string of decimal digits of π (the well-known ratio of the circumference of a circle to its diameter).

¹As always in automata theory, "machine" means abstract machine, a mathematical object whose memory and running time are **not** constrained by the size and lifetime of the known (or unknown) universe, or any other physical laws. A computer program, which can have any length, can be considered to be a machine; by assuming it runs on an abstract machine. If we want to discuss the kind of machine that exists (or could exist) physically, we call it a "physical machine."

- (xxx) _____ For every real number x, there exists a machine that runs forever and outputs the string of decimal digits of x.
- (xxxi) _____ There is a polynomial time algorithm which determines whether any two regular expressions are equivalent.
- (xxxii) _____ If two regular expressions are equivalent, there is a polynomial time proof that they are equivalent.
- (xxxiii) _____ The halting problem is undecidable.
- Let L be the language consisting of all strings over the binary alphabet whose last three symbols are '010.' Design an NFA with four states which accepts L.
- 3. Let L be the language consisting of all strings over $\{a, b\}$ which do not contain the substring *aab*. Write a regular expression for L and draw a minimal DFA which accepts L. (Hint: 3 states.)
- 4. Consider the NFA shown below.
 - (i) Draw a state diagram for a minimal DFA equivalent to that NFA.
 - (ii) Write a regular expression which describes the language accepted by that NFA.
 - (iii) Give a regular grammar which generates the language accepted by that NFA.

- 5. Consider the language L generated by the CF grammar given below.
 - $\begin{array}{l} S->wS\\ S->iS\\ S->iSeS\\ S->a \end{array}$
 - (i) Give a Chomsky Normal Form grammar for L.
 - (ii) Use the CYK algorithm to decide whether $iiwaea \in L$. Show all values of $V_{i,j}$.
- 6. Let L be the set of all algebraic expressions, where the only operations permitted are addition, subtraction, and multiplication, where there are only two variables, x and y and no constants, and where multiplication is indicated by concatenation, as in the expression x + y(xy + x). Parentheses can be used. Write a context-free grammar for L. Your grammar may be ambiguous.
- 7. Design a PDA which accepts the Dyck language. To make it easier to grade, use a and b for left and right parentheses.