Computer Science 456/656 Spring 2021 Practice Examination April 8, 2021 The entire examination is 655 points. The actual exam will be shorter.

	or False. [5 points each] $T = true$, $F = false$, and $O = open$, meaning that the answer is not known tience at this time.
i	Let L be the language over $\Sigma = \{a, b\}$ consisting of all strings of the form $a^m b^n$, where $m, n \geq 0$. Then L is a regular language.
ii	The complement of every regular language is regular.
iii	The Kleene closure of every context-free language is context-free.
iv	If a language has an ambiguous context-free grammar, then it is is not accepted by any deterministic push-down automaton.
v	There is a PDA that accepts all valid C++ programs.
vi	The intersection of any two regular languages is regular.
vii	The intersection of any two context-free languages is context-free.
viii	The set of all base 7 numerals for positive integers n such that n % $3=2$ is regular.
ix	Let L be the language over $\Sigma = \{a, b\}$ consisting of all strings of the form $a^m b^n c^m$, where $m, n \geq 0$. Then L is a context-free language.
x	Let L be the language over $\Sigma = \{a, b\}$ consisting of all strings of the form $a^m b^n$, where $m \ge n$. Then L is a context-free language.
xi	The complement of every context-free language is context-free.
xii	The union of any two context-free languages is context-free.
xiii	If a language has an context-free grammar, then it is is accepted by some push-down automaton.
xiv	Every context-free language has an unambiguous context-free grammar.
XV	Every language that has an unambiguous context-free grammar is accepted by some DPDA.
xvi	Every deterministic machine is a non-deterministic machine.
xvii	The language consisting of all base 2 numerals for integer powers of 2 is regular.
xviii	There is a DPDA that accepts the language of all palindromes over the binary alphabet $\{0,1\}$.
xix	The language $\{a^nb^nc^nd^n\mid n\geq 0\}$ is recursive.
XX	The problem of whether a given context-free grammar generates all strings is decidable.

xxi _____ The language $\{a^i b^j c^k \mid j \geq i + k\}$ is context-free. xxii $_$ If a language L is undecidable, there is no machine that enumerates L in canonical order. xxiii If \mathcal{L} is a class of languages, co- \mathcal{L} is defined to be the class of all languages that are not in \mathcal{L} . Let \mathcal{RE} be the class of all recursively enumerable languages. If L is in \mathcal{RE} and also L is in $co-\mathcal{RE}$, then L must be decidable. xxiv _____ The context-free grammar equivalence problem is in the class \mathcal{RE} . xxv _____ The context-free grammar equivalence problem is in the class co- \mathcal{RE} . xxvi _____ Every bounded function is recursive. xxvii _____ If P is a mathematical proposition that can be stated using n binary bits, and P has a proof, then P must have a proof whose length is $O(2^{2^n})$. xxviii _____ The complement of every recursive language is recursive. xxix _____ The complement of every recursively enumerable language is recursively enumerable. xxx _____ Every language which is generated by an general grammar is recursively enumerable. xxxi _____ The context-free grammar equivalence problem is undecidable. xxxii _____ Given any context-free grammar G and any string $w \in L(G)$, there is always a unique leftmost derivation of w using G. xxxiii _____ For any deterministic finite automaton, there is always a unique minimal non-deterministic finite automaton equivalent to it. xxxiv _____ Using multi-processors and other advanced technology, it is possible to design a machine which decides the halting problem. xxxv _____ The question of whether two regular expressions are equivalent is \mathcal{NP} -complete. xxxvi _____ The intersection of any context-free language with any regular language is context-free. xxxvii _____ The halting problem is recursively enumerable. xxxviii _____ The complement of every context-free language is context-free. xxxix _____ No language which has an ambiguous context-free grammar can be accepted by a DPDA. xl _____ The union of any two context-free languages is context-free. xli _____ The question of whether a given Turing Machine halts with empty input is decidable. xlii _____ The class of languages accepted by non-deterministic Turing Machines is the same as the class of languages accepted by Turing Machines.

xliii _____ Let F(0) = 1, and let $F(n) = 2^{F(n-1)}$ for n > 0. Then F is recursive.

XllV	deterministic machine.						
xlv	The language of all regular expressions over the binary alphabet is a regular language.						
xlvi	There is no computer program that decides whether any two C++ programs are equivalent.						
xlvii	Every function that can be mathematically defined is recursive.						
xlviii	The language of all binary numerals for multiples of 23 is regular.						
xlix	The language of all binary strings which are the binary numerals for prime numbers is context-free.						
1	Every bounded function from integers to integers is Turing-computable. (We say that f is bounded if there is some B such that $ f(n) \leq B$ for all n .)						
li	The language of all palindromes over $\{0,1\}$ is inherently ambiguous.						
lii	The language $\{a^ib^jc^k:i=j\text{or}j=k\}$ is context-free, but is inherently ambiguous.						
liii	Every context-free grammar can be parsed by some deterministic top-down parser.						
liv	Every context-free grammar can be parsed by some non-deterministic top-down parser.						
lv	Commercially available parsers cannot use the LALR technique, since most modern programming languages are not context-free.						
lvi	The diagonal language is \mathcal{RE} .						
lvii	The diagonal language is co- \mathcal{RE} .						
lviii	The regular grammar membership problem is in \mathcal{NC} .						
lix	The context-free grammar membership problem is in \mathcal{NC} .						
lx	There is a polynomial time reduction of SAT to 3-CNF-SAT.						
lxi	There is a language which is neither \mathcal{RE} nor co- \mathcal{RE} .						
lxii	\mathcal{P} -SPACE = co- \mathcal{P} -SPACE						
lxiii	Regular expression equivalence is \mathcal{P} -space complete.						
2. Fill	in the blanks.						
(a)	If there is an easy reduction from L_1 to L_2 , then is at least as hard as						
(b)	If a language is accepted by some Turing machine, it is enumerable.						
(c)	If L_1 is \mathcal{NP} and L_2 is \mathcal{NP} -complete, there must be a \mathcal{P} -TIME reduction of to						
(d)	The language HALT is generated by an grammar.						

3. [30 points] State the Church-Turing thesis, and explain (in about 5 lines or less) why it is important.

- 4. [30 points] We give an LALR parser for the context-free grammar with start symbol S and the given productions. (Think of b and n as begin and end, or as $\{$ and $\}$.) Walk through a computation of that parser for the input string bwwaaiaebnn. The first configuration is $\$_0$: bwwaaiaebnn\$.
 - $1 S \rightarrow a_2$
 - $2 S \rightarrow i_3 S_4$
 - $3 S \rightarrow i_3 S_4 e_5 S_6$
 - $4 S \rightarrow w_7 S_8$
 - $5 S \rightarrow b_9 L_{10} n_{11}$
 - $6 L \to L_{10}S_{12}$
 - 7 $L \rightarrow \lambda$

	a	i	e	w	b	n	\$	S	L
0	s2	s3		s7	s9			1	
1							halt		
2	r1	r1	r1	r1	r1	r1	r1		
3	s2	s3		s7	s9			4	
4	r2	r2	s5	r2	r2	r2	r2		
5	s2	s3		s7	s9			6	
6	r3	r3	r3	r3	r3	r3	r3		
7	s2	s3		s7	s9			8	
8	r4	r4	r4	r4	r4	r4	r4		
9	r7	r7		r7	r7	r7			10
10	s2	s3		s7	s9	s11		12	
11	r5	r5	r5	r5	r5	r5	r5		
12	r6	r6	r6	r6	r6	r6			

- 5. [5 points] What class of machines accepts the class of context free languages?
- 6. [5 points] What class of machines accepts the class of recursively enumerable languages?
- 7. [10 points] What is the canonical order of a language?
- 8. [10 points] What does it mean to say that machines M_1 and M_2 are equivalent?
- 9. [10 points] What does it mean to say that a language L is decidable?
- 10. [10 points] What is a *certificate* or *witness* as used in the definition of the class \mathcal{NP} ?

11. [10 points] What does it mean to say that a language is in the class P-space?

- 12. [20 points] Find a Chomsky normal form grammar equivalent to the context-free grammar given below.
 - $1 S \rightarrow iS$
 - $2 S \rightarrow iSeS$
 - $3 S \rightarrow wS$
 - $4 S \rightarrow a$

13.	[20 points] Let $\Sigma = \{0, 1\}$, the binary alphabet. We say a string w over Σ is mostly positive if $\#_1(w) > \#_0(w)$. Let L be the set of mostly positive strings over Σ .					
	Give a context-free grammar for L . Very hard.					
- 1						
14.	[10 points] What is a reduction of a language L_1 to a language L_2 ?					
15.	(a) [10 points] State the pumping lemma for regular languages accurately. If you have all the right words but in the wrong order, that means you truly do not understand the lemma, and you might get no partial credit at all.					

	(b) [10 points] State the pumping lemma for context-free languages accurately. If you have all the right words but in the wrong order, that means you truly do not understand the lemma, and you might get no partial credit at all.
16.	[20 points] Prove that a recursively enumerable language is accepted by some machine.
17.	[20 points] Prove that a language is accepted by some machine if it is recursively enumerable.

18.	[20 points] Prove that any language that can be recursively enumerated in canonoical order is recursive.
19.	[20 points] Prove that a recursive language can be recursively enumerated in canonoical order.
20.	[20 points] Give a polynomial time reduction of the subset sum problem to the partition problem.

[20 points] Give a polynomial time reduction of 3-CNF-SAT to the independent set problem. use figures in your explanation.	You may