\mathcal{NC} and \mathcal{P} -Completeness

Nick's Class

 \mathcal{NC} , or Nick's Class, is named after Nick Pippenger, currently on the faculty of Harvey Mudd College. A language is \mathcal{NC} if its membership problem can be solved by a parallel program using polynomially many processors in polylogarithmic time.

Many of the problems that you are familiar with are in the class \mathcal{NC} . For example, the 0/1 version of the shortest path problem is in \mathcal{NC} , and every context-free language is in the class \mathcal{NC} . Whether $\mathcal{NC} = \mathcal{P}$ is an open question of enormous importance.

We say that a \mathcal{P} -TIME language (problem) is \mathcal{P} -complete if every \mathcal{P} -TIME language can be reduced to it by a function which can be computed in polylogarithmic time by polynomially many processors.

The Circuit Value Problem, or the Boolean Circuit Problem

We now give a \mathcal{P} -complete problem, namely the circuit value problem. An instance of the Circuit Value Problem is a sequence of n Boolean assignments.

- 1. The left side of the i^{th} assignment is the Boolean variable x_i .
- 2. The right side of the i^{th} assignment is one of the following.
 - (a) 0 (false)
 - (b) 1 (true)
 - (c) x_j for j < i
 - (d) $!x_j$ for j < i (! means 'not')
 - (e) $x_i + x_k$ for j < i and k < i (+ means 'or')
 - (f) $x_j * x_k$ for j < i and k < i (* means 'and')
- 3. The answer to an instance of CVP is the value of x_n .

Trivially, CVP is in \mathcal{P} . Simply execute the *n* statements in order. In fact, the CVP is a Dynamic Programming problem. It is known that CVP is \mathcal{P} -complete, which implies that if it is in Nick's Class, then $\mathcal{NC} = \mathcal{P}$. Can we reduce every DP problem to the CVP, using a Nick's Class reduction?

Boolean Dynamic Programming

We define a Boolean dynamic program \mathcal{P} to be a dynamic program for which the answer to every subproblem is a Boolean value. The *value* of \mathcal{P} is defined to be the value of x_n , the last subproblem. Let x_i be the value of the i^{th} subproblem of a Boolean dynamic program. Then there is a Boolean function of several variables F_i such that $x_i = F_i(x_1, x_2, \dots, x_{i-1})$. (Note that F_1 is a function of no variables, hence is either constant 0 or constant 1.)

We define the *reachback* of a Boolean dynamic program to be the maximum integer d such that, for all i, x_i depends only on $\{x_j : j \ge i - d\}$.¹

We define a *Boolean Dynamic Programming Language* to be any set of Boolean dynamic programs whose values are all **true**. For example, CVP is a Boolean dynamic programming language.

¹The reachback is an upper bound on the *width* of \mathcal{P} , as defined in the file dpNC01.

Theorem 1 Given constants K, K_2 , let $DP[K, K_2]$ be the set of all Boolean dynamic programming problems whose values are true and whose reachback is bounded by $K \log_2 n + K_2$, where n is the length of the problem. then $DP[K, K_2]$ is \mathcal{NC} .

Theorem 2 The class of regular languages is \mathcal{NC} .

Proof: Let L be a regular language. Without loss of generality, L is over the Boolean alphabet $\Sigma = \{0, 1\}$. Let M be a DFA which decides L, and whose states are $Q = \{q_0, q_1, \dots, q_{m-1}\}$.

We define a reduction R from L to DP[0, 2m]. For $w \in \Sigma^*$ Let $\ell = |w|$. R(w) is the Boolean dynamic program \mathcal{P} whose subproblems are x_i for $0 \leq i \leq n = \ell m$. We now define each subproblem. If i < n, let k = i % m and let t = i/m, integer trucated division. Then x_i is true if and only if the computation of M after t steps is in state q_k . We define x_n to be true if and only if the computation is in a final state after ℓ steps. Clearly x_0 is true, and the reachback of \mathcal{P} cannot exceed 2m, since the state of M at step t can be computed from the state of M at step t - 1, and x_n is true if and only if $w \in L$. R can be computed by ℓ processors in $O(m^2)$ time, hence the reduction is \mathcal{NC} . \Box