\section*{\mathcal{NC} and \mathcal{P}-Completeness}

\subsection*{Nick’s Class}

\mathcal{NC}, or Nick’s Class, is named after Nick Pippenger, currently on the faculty of Harvey Mudd College. A language is \mathcal{NC} if its membership problem can be solved by a parallel program using polynomially many processors in polylogarithmic time.

Many of the problems that you are familiar with are in the class \mathcal{NC}. For example, the 0/1 version of the shortest path problem is in \mathcal{NC}, and every context-free language is in the class \mathcal{NC}. Whether $\mathcal{NC} = \mathcal{P}$ is an open question of enormous importance.

We say that a \mathcal{P}-time language (problem) is \mathcal{P}-complete if every \mathcal{P}-time language can be reduced to it by a function which can be computed in polylogarithmic time by polynomially many processors.

\section*{The Circuit Value Problem, or the Boolean Circuit Problem}

We now give a \mathcal{P}-complete problem, namely the circuit value problem. An instance of the Circuit Value Problem is a sequence of n Boolean assignments.

1. The left side of the ith assignment is the Boolean variable x_i.
2. The right side of the ith assignment is one of the following.

 \begin{enumerate}
 \item 0 (false)
 \item 1 (true)
 \item x_j for $j < i$
 \item $!x_j$ for $j < i$ (! means ‘not’)
 \item $x_j + x_k$ for $j < i$ and $k < i$ (+ means ‘or’)
 \item $x_j \cdot x_k$ for $j < i$ and $k < i$ (* means ‘and’)
 \end{enumerate}

3. The answer to an instance of CVP is the value of x_n.

Trivially, CVP is in \mathcal{P}. Simply execute the n statements in order. In fact, the CVP is a Dynamic Programming problem. It is known that CVP is \mathcal{P}-complete, which implies that if it is in Nick’s Class, then $\mathcal{NC} = \mathcal{P}$. Can we reduce every DP problem to the CVP, using a Nick’s Class reduction?

\section*{Boolean Dynamic Programming}

We define a Boolean dynamic program \mathcal{P} to be a dynamic program for which the answer to every subproblem is a Boolean value. The \emph{value} of \mathcal{P} is defined to be the value of x_n, the last subproblem. Let x_i be the value of the ith subproblem of a Boolean dynamic program. Then there is a Boolean function of several variables F_i such that $x_i = F_i(x_1, x_2, \ldots x_{i-1})$. (Note that F_1 is a function of no variables, hence is either constant 0 or constant 1.)

We define the \emph{reachback} of a Boolean dynamic program to be the maximum integer d such that, for all i, x_i depends only on $\{x_j : j \geq i - d\}$.\footnote{The reachback is an upper bound on the \emph{width} of \mathcal{P}, as defined in the file dpNC01.}

We define a \emph{Boolean Dynamic Programming Language} to be any set of Boolean dynamic programs whose values are all \emph{true}. For example, CVP is a Boolean dynamic programming language.
Theorem 1 Given constants K, K_2, let $DP[K, K_2]$ be the set of all Boolean dynamic programming problems whose values are true and whose reachback is bounded by $K \log_2 n + K_2$, where n is the length of the problem. Then $DP[K, K_2]$ is NC.

Theorem 2 The class of regular languages is NC.

Proof: Let L be a regular language. Without loss of generality, L is over the Boolean alphabet $\Sigma = \{0, 1\}$. Let M be a DFA which decides L, and whose states are $Q = \{q_0, q_1, \ldots, q_{m-1}\}$.

We define a reduction R from L to $DP[0, 2m]$. For $w \in \Sigma^*$ let $\ell = |w|$. $R(w)$ is the Boolean dynamic program P whose subproblems are x_i for $0 \leq i \leq n = \ell m$. We now define each subproblem. If $i < n$, let $k = i \% m$ and let $t = i/m$, integer truncated division. Then x_i is true if and only if the computation of M after t steps is in state q_k. We define x_n to be true if and only if the computation is in a final state after ℓ steps. Clearly x_0 is true, and the reachback of P cannot exceed $2m$, since the state of M at step t can be computed from the state of M at step $t - 1$, and x_n is true if and only if $w \in L$. R can be computed by ℓ processors in $O(m^2)$ time, hence the reduction is NC. □