NC and P-Completeness

Nick's Class

 NC , or Nick's Class, is named after Nick Pippenger, currently on the faculty of Harvey Mudd College. A language is \mathcal{NC} if its membership problem can be solved by a parallel program using polynomially many processors in polylogarithmic time.

Many of the problems that you are familiar with are in the class $N\mathcal{C}$. For example, the $0/1$ version of the shortest path problem is in \mathcal{NC} , and every context-free language is in the class \mathcal{NC} . Whether $\mathcal{NC} = \mathcal{P}$ is an open question of enormous importance.

We say that a $\mathcal{P}\text{-}\text{TIME}$ language (problem) is $\mathcal{P}\text{-}\text{complete}$ if every $\mathcal{P}\text{-}\text{TIME}$ language can be reduced to it by a function which can be computed in polylogarithmic time by polynomially many processors.

The Circuit Value Problem, or the Boolean Circuit Problem

We now give a P-complete problem, namely the circuit value problem. An instance of the Circuit Value Problem is a sequence of n Boolean assignments.

- 1. The left side of the i^{th} assignment is the Boolean variable x_i .
- 2. The right side of the ith assignment is one of the following.
	- (a) 0 (false)
	- (b) 1 (true)
	- (c) x_j for $j < i$
	- (d) x_i for $j < i$ (! means 'not')
	- (e) $x_i + x_k$ for $j < i$ and $k < i$ (+ means 'or')
	- (f) $x_i * x_k$ for $j < i$ and $k < i$ (* means 'and')
- 3. The answer to an instance of CVP is the value of x_n .

Trivially, CVP is in \mathcal{P} . Simply execute the *n* statements in order. In fact, the CVP is a Dynamic Programming problem. It is known that CVP is P -complete, which implies that if it is in Nick's Class, then $\mathcal{NC} = \mathcal{P}$. Can we reduce every DP problem to the CVP, using a Nick's Class reduction?

Boolean Dynamic Programming

We define a Boolean dynamic program P to be a dynamic program for which the answer to every subproblem is a Boolean value. The *value* of P is defined to be the value of x_n , the last subproblem. Let x_i be the value of the ith subproblem of a Boolean dynamic program. Then there is a Boolean function of several variables F_i such that $x_i = F_i(x_1, x_2, \ldots, x_{i-1})$. (Note that F_1 is a function of no variables, hence is either constant 0 or constant 1.)

We define the *reachback* of a Boolean dynamic program to be the maximum integer d such that, for all *i*, x_i depends only on $\{x_j : j \ge i - d\}$ ¹

We define a *Boolean Dynamic Programming Language* to be any set of Boolean dynamic programs whose values are all true. For example, CVP is a Boolean dynamic programming language.

¹The reachback is an upper bound on the *width* of P , as defined in the file dpNC01.

Theorem 1 *Given constants* K, K_2 , let $DP[K, K_2]$ *be the set of all Boolean dynamic programming* problems whose values are true and whose reachback is bounded by $K \log_2 n + K_2$, where n is the *length of the problem. then* $DP[K, K_2]$ *is* NC *.*

Theorem 2 *The class of regular languages is* NC *.*

Proof: Let L be a regular language. Without loss of generality, L is over the Boolean alphabet $\Sigma = \{0, 1\}$. Let M be a DFA which decides L, and whose states are $Q = \{q_0, q_1, \ldots q_{m-1}\}.$

We define a reduction R from L to $DP[0, 2m]$. For $w \in \Sigma^*$ Let $\ell = |w|$. $R(w)$ is the Boolean dynamic program P whose subproblems are x_i for $0 \le i \le n = \ell m$. We now define each subproblem. If $i < n$, let $k = i\%m$ and let $t = i/m$, integer trucated division. Then x_i is true if and only if the computation of M after t steps is in state q_k . We define x_n to be true if and only if the computation is in a final state after ℓ steps. Clearly x_0 is true, and the reachback of $\mathcal P$ cannot exceed $2m$, since the state of M at step t can be computed from the state of M at step $t-1$, and x_n is true if and only if $w \in L$. R can be computed by ℓ processors in $O(m^2)$ time, hence the reduction is \mathcal{NC} . \Box