
NC and P-Completeness

Nick’s Class

NC, or Nick’s Class, is named after Nick Pippenger, currently on the faculty of Harvey Mudd
College. A language is NC if its membership problem can be solved by a parallel program using
polynomially many processors in polylogarithmic time.

Many of the problems that you are familiar with are in the class NC. For example, the 0/1
version of the shortest path problem is in NC, and every context-free language is in the class NC.
Whether NC = P is an open question of enormous importance.

We say that a P-time language (problem) is P-complete if every P-time language can be
reduced to it by a function which can be computed in polylogarithmic time by polynomially many
processors.

The Circuit Value Problem, or the Boolean Circuit Problem

We now give a P-complete problem, namely the circuit value problem. An instance of the Circuit
Value Problem is a sequence of n Boolean assignments.

1. The left side of the ith assignment is the Boolean variable xi.

2. The right side of the ith assignment is one of the following.

(a) 0 (false)

(b) 1 (true)

(c) xj for j < i

(d) !xj for j < i (! means ‘not’)

(e) xj + xk for j < i and k < i (+ means ‘or’)

(f) xj ∗ xk for j < i and k < i (∗ means ‘and’)

3. The answer to an instance of CVP is the value of xn.

Trivially, CVP is in P. Simply execute the n statements in order. In fact, the CVP is a Dynamic
Programming problem. It is known that CVP is P-complete, which implies that if it is in Nick’s
Class, then NC = P. Can we reduce every DP problem to the CVP, using a Nick’s Class reduction?

Boolean Dynamic Programming

We define a Boolean dynamic program P to be a dynamic program for which the answer to every
subproblem is a Boolean value. The value of P is defined to be the value of xn, the last subproblem.
Let xi be the value of the ith subproblem of a Boolean dynamic program. Then there is a Boolean
function of several variables Fi such that xi = Fi(x1, x2, . . . xi−1). (Note that F1 is a function of no
variables, hence is either constant 0 or constant 1.)

We define the reachback of a Boolean dynamic program to be the maximum integer d such that,
for all i, xi depends only on {xj : j ≥ i− d}.1

We define a Boolean Dynamic Programming Language to be any set of Boolean dynamic pro-
grams whose values are all true. For example, CVP is a Boolean dynamic programming language.

1The reachback is an upper bound on the width of P, as defined in the file dpNC01.

1

Theorem 1 Given constants K,K2, let DP [K,K2] be the set of all Boolean dynamic programming

problems whose values are true and whose reachback is bounded by K log2 n + K2, where n is the

length of the problem. then DP [K,K2] is NC.

Theorem 2 The class of regular languages is NC.

Proof: Let L be a regular language. Without loss of generality, L is over the Boolean alphabet
Σ = {0, 1}. Let M be a DFA which decides L, and whose states are Q = {q0, q1, . . . qm−1}.

We define a reduction R from L to DP [0, 2m]. For w ∈ Σ∗ Let ℓ = |w|. R(w) is the Boolean
dynamic program P whose subproblems are xi for 0 ≤ i ≤ n = ℓm. We now define each subproblem.
If i < n, let k = i%m and let t = i/m, integer trucated division. Then xi is true if and only if the
computation of M after t steps is in state qk. We define xn to be true if and only if the computation
is in a final state after ℓ steps. Clearly x0 is true, and the reachback of P cannot exceed 2m, since
the state of M at step t can be computed from the state of M at step t − 1, and xn is true if and
only if w ∈ L. R can be computed by ℓ processors in O(m2) time, hence the reduction is NC. ✷

2

