
This version Tue Mar 29 16:30:38 PDT 2022

Reductions

Throughout, if we say “machine” we mean deterministic machine, unless we specially say
“non-deterministic.”

Let L1, L2 be languages over the alphabets Σ1 and Σ2, respectively. A function R :
Σ∗
1 → Σ∗

2 is a reduction of L1 to L2 if, for all w ∈ Σ∗
1, w ∈ L1 if and only if R(w) ∈ L2.

A reduction R is a function, which may not be recursive (computable). However, any
reduction that we might use is recursive. Any reduction that we use in the theory of
NP-complete languages is not only recursive, but is also computable in polynomial time.

Instances. We frequently discuss the complexity of a problem, which we can interpret as
a language. But we usually have a concept of “instances” of a problem. For example, for
the Boolean satisfiability problem (SAT), an instance is a Boolean expression, rather than
an arbitrary string of symbols. Lbool ⊆ Σ∗ is the language of all Boolean expressions, where
Σ is an appropriate alphabet. Since Lbool is context-free, it is P. Later, we give a reduction
of SAT to 3-SAT. The reduction we give is not defined on all of Σ∗, but only on Lbool. We
justify this by observing that it is easy to recognize whether a string is a member of Lbool.
If R : Lbool → Σ∗ has the property that e ∈ SAT if and only if R(e) ∈ 3SAT, we extend
R by defining it to be some default string, such as the empty string, for all members of Σ∗

which are not in Lbool. Then R is a reduction in the original sense.
The reductions used in most practical applications, including those in this document,

satisfy an additional condition, namely that they are functions of instances of one problem
to instances of another. For example, L3cnf is the set of all Boolean expressions in 3-CNF
form, while L3sat is the language of all satisfiable Boolean expressions in 3-CNF form. To
reduce SAT to 3SAT, we simply give a function R : Lbool → L3cnf such that R(e) ∈ Lsattsat

if and only if e ∈ Lsat.
Henceforth, a reduction of a problem will only be defined on instances of the problem.

By the logic given above, that is sufficient if the set of instances of the problem is in P,
which is always true in practice.

A language L is in the class P–time (or simply P) if there is some constant k and some
machine M (A machine of any class: Turing machine, RAM, virtual C++ machine, or
whatever.) which decides whether a given string w is a member of L, in at most nk steps,
where n = |w|.

A language L is in the class NP–time (or simply NP) if there is some constant k
and some non-deterministic machine M such that, given any string w ∈ L, there is a
computation of M , with input w, which halts in at most nk steps, where n = |w|, and such
that, for any string w /∈ L, there is no computation of M with input w which halts. Note
that, since M is non-deterministic, there could be lots of computations of M with input w
that do not halt, even if w ∈ L.

1

Verifier Definition of NP

There is an equivalent definition of NP which is much easier to work with, the verifier

definition, given below.
Let L ⊆ Σ∗ be a language. Then L is NP if there is an integer k and a program V

(called the verifier) such that

1. The input of V is an ordered pair of strings (w, c), and the output is the single symbol
“0” or “1.”

2. Let w ∈ Σ∗, and let n = |w|. If w ∈ L, there is a string c called a certificate of w such
that V halts with input (w, c) and outputs “1” within nk steps.

3. For any string w /∈ L, the output of V with input (w, c) is “0.” regardless of c.

Definition 1 We say that a language L1 is NP-complete if the following two conditions
are satisfied:

1. L1 ∈ NP

2. For any L2 ∈ NP, there exists a polynomial time reduction of L2 to L1.

Theorem 1 If L1 is NP-complete, L2 ∈ NP, and there is a polynomial time reduction of

L1 to L2, then L2 is NP-complete.

Proof: Condition 1 of the definition is given. To prove Condition 2, let L3 ∈ NP;
We need to show that there is a polynomial time reduction R L3 to L2. Since L1 is NP-
complete, there is a polynomial time reduction of L3 to L1, and we are given a polynomial
time reduction of L1 to L2. Let R be the composition of those two reductions. ✷

Theorem 2 If L1 ∈ P and L1 is NP-complete, then P = NP.

Proof: Trivially, P ⊆ NP. We need only show that any L2 ∈ NP is in P.
Let L2 ∈ NP. Since L1 ∈ P, there is a machine M1 that decides L in polynomial time.

Since L1 is NP-complete, there is a polynomial time reduction of L2 to L1, computed by
some machine M2. Connecting the input of M1 with the output of M2, we obtain a machine
that decides L2 in polynomial time. Thus, L2 ∈ P. ✷

Boolean Satisfiability

Generally, we define a Boolean expression to be an expression involving variables and op-
erators, where all variables have Boolean type and all operators have Boolean type.1 A
satisfying assignment of a Boolean expression is an assignment of truth values (there are
only two truth values, true and false) to each variable so that the value of the expression

1This definition is much more restrictive than the definition of a Boolean expression in a programming

language, which could contain other things, such as the C++ expression “n == 5” where n is a variable of

integer type.

2

is true. If a Boolean expression has a satisfying assignment, we say it is satisfiable; other-
wise, we say it is a contradiction. The Boolean satisfiability problem is to determine that
a given boolean expression is satisfiable. This problem is NP-complete, and in fact is our
“base” NP-complete problem, the one we shall use to determine that other problems are
NP-complete.

Formal Definition of Boolean Satisfiability

We first define a context-free language Lbool to consist of all boolean expressions using the
following rules:

1. All variables are written in alphanumeric style, i.e., are strings containing letters and
digits and starting with a letter.

2. The only operators permitted are

(a) “+” denoting or.

(b) “·” denoting and.

(c) “∼” denoting not.

(d) “=” denoting if and only if.

(e) “⇒” denoting implies.

We apply the following precedence rules:

(a) “∼” has precedence over all other operators.

(b) “·” has precedence over all operators except “∼”

(c) “+” has precedence over all operators except “∼” and “·”

(d) “⇒” has precedence over “=”

(e) All binary operators are left-associative.

It is an easy exercise to design a context-free grammar for Lbool, using the alphabet consist-
ing of the operator symbols listed above, letters and digits, and right and left parentheses.

Certificates for Lsat A certificate for any w ∈ Lsat is a satisfying assignment. For
example, x = 1, y = 0 is a certificate for the boolean expression (x+ y) · (∼ x+ ∼ y), while
the boolean expression (x· ∼ x) has no certificate. Since a certificate for any w ∈ L is no
longer than w itself, and since it can be verified in linear time, we have an NP certificate
system for Lsat.

Conjunctive normal form. We say that w ∈ Lbool is in conjunctive normal form (ab-
breviated CNF) if it is the conjunction of clauses, where each clause is the disjunction of
terms, and each term is either a variable or the negation of a variable.

Definition 2

1. Lsat is the subset of Lbool consisting of all satisfiable boolean expressions.

3

2. L3cnf is the subset of Lbool consisting of all boolean expressions in conjunctive normal

form where each clause has exactly three terms.

3. L3sat = L3cnf ∩ Lsat.

We give context-free grammars for both Lbool and L3cnf .

Unambiguous Context-free grammar for Lbool

The start symbol is S.
S → E = E | E ⇒ E | E
E → E + T | T
T → T · F | F
F → ∼ F | V | (S)
V → AP
P → AP | NP | ǫ
A → a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z
N → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Ambiguous Context-free grammar for Lbool

It is more practical to give an ambiguous grammar for Lbool, since parse trees are simpler.
The start symbol of this grammar is E, for “expression.” For simplicity, we use the symbol
id to stand for any identifier.
E → E + E
E → E · E
E →∼ E
E → E ⇒ E
E → E = E
E → (E)
E → id

Unambiguous Context-free grammar for L3cnf

The start symbol is E.
E → E · C | C
C → (T + T + T)
T → ∼ V | V
V → AP
P → AP | NP | ǫ
A → a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z
N → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Theorem 3 Lsat is NP-complete.

The proof of Theorem 3 is long, but straightforward. I do not believe it to be a good
idea to present it to the class, but you can read it in a number of places.

4

Theorem 4 L3sat is NP-complete.

Theorem 4 is proven by giving a polynomial time reduction of Lsat to L3sat. We will
not give the details of this reduction, but we discuss some of the issues.

Two Boolean expressions are usually said to be equal if they have the same variables and
every assignment of those variables satisfies either both expressions or neither expression.
For example, the expression x · (y+ z) is equal to the expression x ·y+x · z. It is impossible
to find a reduction R of Lsat to L3sat which maps every boolean expression of Lbool to an
equal Boolean expression in L3cnf . Our reduction must make use of new variables.

Clauses are not independent. For example, let e be the expression in 2-CNF form:

(x+ y) · (x+ ∼ y) · (∼ x+ y) · (∼ x+ ∼ y)

Each of the four clauses is satisfiable. In fact, the conjunction of any three of those clauses
is satisfiable. But e, the conjunction of all four clauses, is not satisfiable.

Let e1 be the Boolean expression (x + y + z + w) · F , where F is satisfiable. Clearly
x+ y+ z+w is satisfiable, but e1 may not be. For example, x, y, z, and w could all appear
somewhere in F , and it could be that the every satisfying assignment of F assigns false to
all four of those variables. We must find a Boolean expression e2 which is equivalent to e1
in a weaker way, namely that e2 is satisfiable if and only if e1 is satisfiable.

We use the a new variable which must have a name that does not appear in F . Let u
be that new variable. Now let e2 be the Boolean expression (x+ y+ u) · (∼ u+ z +w) · F .
If F is 3CNF, then e2 is 3-CNF. We see that e1 and e2 are not equal, because e2 has more
variables that e1, but they are equivalent in the weaker sense defined above.

Suppose e1 is satisfiable. Then there is an assignment of the variables of e1 such that
at least one of the four variables x, y, z, and w is assigned true. The same assignment,
augmented by an assignment of u, satisfies e2. To prove this, we consider two cases.

Case I: Either x or y is assigned true. Then assign u the value false. The clause
(x+y+u) is true because x is true, while the clause (∼ u+z+w) is true because u is false.
The expression F is still true, since the assignments of its variables have not changed.

Case II: Either z or w is assigned true. Then assign u true, making the first clause true.
The second clause is also true, and F is still true as before.

On the other hand, suppose e1 is a contradiction. Then x, y, z, and w must all be
assigned false. Whatever the assignment of u, either the first or the second clause must be
false, hence e2 is a contradiction.

Other NP-Complete Problems

The most common method of proving that a given problem (i.e., language) is NP-complete
is to use Theorem 1, where L1 is taken to be a problem (i.e., language) already known to be
NP-complete. The problem L3sat is one of the more popular choices used for this purpose.2

2The precise definition of the problem described in this handout as L3sat differs from book to book, but

they are all equivalent.

5

The Independent Set Problem

Given a graph G and a number k, an independent set of G is defined to be a set I of vertices
of G such that no two members of I are connected by an edge of G. The order of I is
defined to be its size, i.e.., simply how many vertices it contains.

An instance of the independent set problem is 〈G〉〈k〉, where G is a graph and k is an
integer. The question is, ”Does G have an independent set of order k?”

The language Lind. We define Linstance-ind = {〈G〉k} to be the instances of the inde-
pendent set problem, and Lind ⊆ Linstance-ind the set of instances for which the graph G
has an independent set k vertices.

Theorem 5 Lind is NP complete.

Proof: For any w ∈ L3cnf , we construct R(w) ∈ Linstance-ind such that w ∈ L3sat if
and only if R(w) ∈ Lind. Thus R is a reduction of 3SAT to IND.

Let e ∈ L3cnf . Then e = C1 ·C2 · · · · ·Ck, where Ci = (ti,1 + ti,2 + ti,3), where each ti,j is
either x or ∼ x, where x is a string which represents a variable.

We now define a graph G[e] = (V,E), where V = {vi,j |1 ≤ i ≤ k, 1 ≤ j ≤ 3} is the set
of vertices of G[e], and E the set of edges of G[e], as follows:

1. For each 1 ≤ i ≤ k, there is an edge from vi,j to vi,j′ for all 1 ≤ j < j′ ≤ 3. Call these
short edges.

2. If ti,j = x and ti′,j′ =∼ x for some variable x, there is an edge from vi,j to vi′,j′ . Call
these long edges.

3. There are no other edges.

Let R(e) = G[e], k) We now show that R(e) ∈ Lind if and only if e is satisfiable. For
each i, let Ki be the subgraph of G[e] consisting of the three vertices vi,1, vi,2, vi,3, and the
edges connecting them.

Suppose G[e], k ∈ Lind. Let I ⊂ V be an independent set of of size k. Since Ki is a
clique, and the number of such cliques is equal to k, exactly one member of I must lie in
each Ki.

We define an assignment of e. If vi,j ∈ I and ti,j = x for some variable x, assign the
value true to x, while if ti,j =∼ x, assign false to x. Assign all remaining variables arbitrary
Boolean values. This assignment is well-defined, for if vi,j , vi′,j′ ∈ I for i 6= i′, there can
be no edge between those two vertices, which implies that ti,j does not contradict ti′,j′ .
Furthermore, each clause has one term which is assigned true, hence each clause is assigned
true, and we thus the assignment is satisfying.

Conversely, suppose that there is a satisfying assignment of e. That means each clause Ci

must contain one term, say ti,j[i] which is true under the assignment. Let I =
{

vi,j[i]
}

⊆ V .

No two elements of I are in the same clique Ki, hence there is no short edge connecting
them, and there can be no long edge connecting them because vi,j[i] and vi′,j[i′] are both
assigned true and hence cannot contradict each other. Thus I is an independent set. ✷

6

Example

A non-trivial example would have at least eight clauses, but I’ll keep it simple. Let e be
the 3CNF expression

(x+ y + z) · (!x+!y + w) · (y+!z+!w) · (!y + z+!w)

Then k = 4. The following diagram illustrates G[e]. The vertices of I are circled in red.
The satisfying assignment shown is x = false, y = true, w = false, while z can be assigned
either true or false.

y

!w

!w

!y

!y
y

!z

z

x !x

w

z

(x+y+z) (!x+!y+w) (y+!z+!w) (!y+z+!w)

C1 C2

K 3

K 2

K 4

K 1

C3 C4

The Subset Sum Problem

Informally, the subset sum problem is whether there is a subset of a given set of items
whose total is a given number. Formally, an instance of the subset sum problem is a finite
sequence x1, . . . xk of non-negative numbers and a single number B. This instance is a
member of the language LSS if there is some subsequence of {xi} whose sum is B.

Theorem 6 The subset sum problem is NP-complete.

Proof: Trivially, the subset sum problem satisfies the verifiability definition of NP.
We reduce the independent set problem to the subset sum problem. Suppose 〈G〉〈k〉

is an instance of the independent set problem, where G has n vertices and m edges. Let
e0, . . . em−1 be the edges of G and vm . . . vn+m−1 the vertices of G. Define R(〈G〉〈k〉) to be
the instance of the subset sum problem w = (x0, x1, . . . xn+m−1, B) where

• xi = 4i for 0 ≤ i < m

• For m ≤ i < n+m, let Ji = {j : vi is an endpoint of ej}, then xi = 4m +
∑

j∈Ji
4j .

• B = k4m +
∑

0≤j<m 4j

7

For 0 ≤ j < m, xj corresponds to the edge ej, while for m ≤ i < m+ n, xi corresponds to
the vertex vi.

We need to prove R is a reduction of IND to Subset Sum. Suppose I ⊆ V is an
independent set of k vertices of G. Let

S = {xj : 0 ≤ j < m and no endpoint of ej is in I} ∪ {xi : m ≤ i < n+m and vi ∈ I}

We need to show that the
∑

S, the sum of the members of S, equals B. Since there |I| = k,
the coefficient of 4m is k. An ej is adjacent to either just one member of I or none. If
ej is adjacent to vertex vi ∈ I, then the coefficient of 4j in xi is 1, matching that of B.
Otherwise, S contains xj, which is simply 4j , hence

∑

S = B.
Conversely, suppose there is a subset S of the sequence whose sum is B. Let I =

{vi : xi ∈ S}. Since the coefficient of 4m in B is k, I must contain exactly k vertices. Since
the coefficient of every xj in B is 1, no two members of the I can be adjacent, hence I is a
solution to the subset sum problem. ✷

Example

Let G be the graph shown below, and let k = 3.

e0 e1

e3 e5

v10 v11 v12

v13 v14 v15 v16e7 e8 e9

e2 e4 e6

We show the reduced instance of the subset sum problem, where the xi are written in
base 4.

8

x0 = 1
x1 = 10
x2 = 100
x3 = 1000
x4 = 10000
x5 = 100000
x6 = 1000000
x7 = 10000000
x8 = 100000000
x9 = 1000000000
x10 = 10000001101
x11 = 10000110011
x12 = 10001000010
x13 = 10010000100
x14 = 10110011000
x15 = 11101100000
x16 = 11000000000
B = 31111111111

The graph below shows an independent set I of vertices of order 3, together with the
set of edges which are not adjacent to members of I.

e0 e1

e3 e5

v10 v11

v13 v15e7 e8 e9

e2 e4 e6

v12

v14 v16

Finally, we show the members of the subsequence corresponding to the chosen vertices
and edges.

x0 = 1
x2 = 100
x5 = 100000
x12 = 10001000010
x14 = 10110011000
x16 = 11000000000

B = 31111111111

Subset Sum and Partition

The subset sum problem can be shown to be NP-complete by reducing IND to subset sum.
I have not yet given that reduction in class We can then show that the partition problem
is NP-complete by reducing Subset Sum to Partition.

Recall that an instance of the Subset Sum problem is a number followed by a sequence of

9

positive numbers, followed by one number, K, that is, (x1, x2, . . . xm,K), and that instance
is in Lsubs if there is some subsequence of x1, . . . xm whose total is K. Let Lsubs be the
language of all instances of the problem which have a solution.

Similarly, an instance of the Partition problem is a sequence of positive numbers, namely
〈y1, . . . yℓ〉, and there is a solution to that instance if and only if there is some subsequence
of y1, . . . yℓ whose sum is half the total, i.e. 1

2

∑ℓ
j=1 yj . Let Lpart be the language of all

instances of the problem which have a solution.
The partition problem is trivially in the class NP, since the solution, if any, can be

verified in polynomial time.

Reduction

Given an instance IK = (x1, x2, . . . xm,K) of Subset Sum, let A =
∑m

i=1 xi. Let R(IK) = IP
be the following instance of Partition:

IP = (x1, . . . xm,K + 1, A−K + 1)

That is, IP = (y1, . . . yℓ) where ℓ = m + 2, yi = xi for i ≤ m, ym+1 = K + 1, and
ym+2 = A−K + 1.

We need to prove that this reduction works, that is, that IP ∈ Lpart if and only if
IK ∈ Lsubs. There are thus two directions to the proof.

Note that the sum of the items of IP is 2A+ 2, and half of that is A+ 1.
Suppose that IK ∈ Lsubs. Then there is a subsequence of {xi} whose total is K. The

items of this subsequence, together with A−K + 1, have total A+ 1, and thus IP ∈ Lpart.
Conversely, suppose some subsequence S of K + 1, x1, . . . xm, L + 1 has total A + 1.

That subsequence cannot contain both K+1 and A−K+1, since their total exceeds A+1.
Similarly, and by symmetry, S must contain either K + 1 or A −K + 1. Without loss of
generality, S contains A −K + 1. The remaining members of S constitute a subsequence
of x1, . . . xm whose total is K, and we are done.

Conversely, suppose there is a subset B of {xi} whose total is K. Then B∪{A−K + 1}
is a subset of the sequence {yj} whose total is A+ 1, and we are done.

10

