Regular Languages are NC

Let L be a regular language, and let M be a DFA which accepts (actually, decides) L. Using M , we design an NC algorithm which decides L in $O(\log n)$ time using $O(n)$ processors, where n is the length of the input string w .

 $M = (Q, \Sigma, \delta, q_0, F)$. Recall Q is the set of states of M, Σ is the input alphabet, $\delta: Q \times \Sigma \to Q$ is the transition function, $q_0 \in Q$ is the start state, and $F \subseteq Q$ is the set of final states. We extend the transition function to $\delta^*: Q \times \Sigma^* \to Q$ inductively: $\delta^*(q, \lambda) = q$, and $\delta^*(q, aw) = \delta^*(\delta(q, a), w)$ for any $a \in \Sigma$, $q \in Q$. If $w \in \Sigma^*$, then $w \in L$, *i.e.*, is accepted by M, if $\delta^*(q_0, w) \in F$. Equivalently, we describe the transition function of M by a function $\delta^* (, x) : Q \to Q$ for any $x \in \Sigma^*$; where δ^* $\phi(x)(q) = \delta^*(q, x)$ for all $q \in Q$.

We now describe an \mathcal{NC} algorithm \mathcal{A} , which decides whether a given string is a member of L. To simplify our construction, we assume that the length of the input string is a power of 2, although it is a simple matter to generalize to arbitrary n: augument Σ with a special "do nothing" symbol •, which we call a blank. Define $\delta(q, \bullet) = q$ for any $q \in Q$. Let w^* be the string obtained by padding the input string w with just enough blanks to bring its length to a power of 2. For example, if $w = aabcacbabbcaa$ we let $w^* = aabcacbabbccca \cdot \cdot \cdot$. Let $n = 2^m = |w^*|$. Let \mathfrak{S} be the set of consisting of all subintervals obtained by breaking w^* into 2^i pieces each of length 2^{m-i} , for all $0 \leq i \leq m$. Thus G consists of all subintervals of length 1, $n/2$ subintervals of length 2, $n/4$ subintervals of length 4, and so forth; these will include 2 subintervals of length $n/2$ and one of length n, namely w itself. The cardinality of \mathfrak{S} is $2n-1$. Each member of \mathfrak{S} of length 2^i , for $i > 0$, is the concatenation of two members of G of length 2^{i-1} . We let $u_{i,j}$ be the jth member of G of length 2^i , for $0 \le i \le m$ and $1 \le j \le 2^{n-i}$. That is, $u_{i,j}$ is the substring of w^* of length 2^i ending at the $(2^{i}j)^{\text{th}}$ place of w^{*}. A has $1+m$ phases, which we number $0, 1,..., m$. Phase i of A computes δ^* (*, u_{i,j})* for all $1 \leq j \leq 2^i$, takes $O(1)$ time and uses 2^{m-i} processors. The functions δ^* (, $u_{0,j}$) for all j can simply be read off the state diagram of M. For $i > 0$, δ^* (, $u_{i,j}$) is simply the composition of the functions δ^* (, $u_{i-1,2j-1}$) and δ^* (, $u_{i-1,2j}$), for all $1 \leq j \leq 2^{m-i}$. For example, in Phase 1 of the example computation below, δ^* (*, bc*) is the composition of δ^* (*, b*) with δ^* (*, c*)

Example

Let M be given by the state diagram below. For simplicitly, we dispense with the clumsy " q_i " notation and write simply i. Thus $Q = \{0, 1, 2\}$, the start state is 0, and $F = \{2\}$.

Let $w = aabcacbabccca$. The sequential computation of M with input w takes 13 steps. Since $2 \in F$, w is accepted.

$$
0\stackrel{a}{\longrightarrow}0\stackrel{a}{\longrightarrow}0\stackrel{b}{\longrightarrow}1\stackrel{c}{\longrightarrow}1\stackrel{a}{\longrightarrow}2\stackrel{c}{\longrightarrow}1\stackrel{b}{\longrightarrow}0\stackrel{a}{\longrightarrow}0\stackrel{b}{\longrightarrow}1\stackrel{c}{\longrightarrow}1\stackrel{c}{\longrightarrow}1\stackrel{c}{\longrightarrow}1\stackrel{a}{\longrightarrow}2
$$

Padding with blanks to obtain a length of 16, a power of 2, we let $w^* = aabcacbabccca \bullet \bullet$. Execute A in five phases using 16 processors.

The computation at Phase 4 tells us that $\delta^*(0, aabcacababccca \bullet \bullet) = 2$, a final state. Thus $aabcacbabccccacac$ _EL.