Regular Languages are NC

Let L be a regular language, and let M be a DFA which accepts (actually, decides) L. Using M,
we design an NC algorithm which decides L in O(logn) time using O(n) processors, where n is
the length of the input string w.

M = (Q,%,6,q, F). Recall Q is the set of states of M, ¥ is the input alphabet, § : Q@ x ¥ — @ is
the transition function, ¢, € Q) is the start state, and F' C @Q is the set of final states. We extend
the transition function to 0* : @ x X* — @ inductively: §*(q, \) = ¢, and 6*(q, aw) = 6*(d(q, a), w)
foranya € ¥, ¢ € Q. If w € ¥*, then w € L, i.e., is accepted by M, if §*(q,, w) € F. Equivalently,
we describe the transition function of M by a function 6*(,z) : @ — Q. for any z € ¥*; where
0*(,x)(q) = 0*(q,x) for all ¢ € Q.

We now describe an NC algorithm A, which decides whether a given string is a member of L. To
simplify our construction, we assume that the length of the input string is a power of 2, although
it is a simple matter to generalize to arbitrary n: augument ¥ with a special “do nothing” symbol
e, which we call a blank. Define §(g,o) = ¢ for any ¢ € Q. Let w* be the string obtained by
padding the input string w with just enough blanks to bring its length to a power of 2. For
example, if w = aabcacbabbcaa we let w* = aabcacbabcccases. Let n = 2™ = |w*|. Let & be the
set of consisting of all subintervals obtained by breaking w* into 2¢ pieces each of length 2™, for
all 0 <47 < m. Thus & consists of all subintervals of length 1, n/2 subintervals of length 2, n/4
subintervals of length 4, and so forth; these will include 2 subintervals of length n/2 and one of
length n, namely w itself. The cardinality of & is 2n — 1. Each member of & of length 2, for
i > 0, is the concatenation of two members of & of length 2°~'. We let u, ; be the 5" member of
S of length 2, for 0 < i <m and 1 < j < 2" *. That is, u,, is the substring of w* of length 2’
ending at the (275)% place of w*. A has 1 +m phases, which we number 0,1, ...m. Phase i of A
computes §*(,u, ;) for all 1 < j < 2!, takes O(1) time and uses 2" processors. The functions
0*(,uo,;) for all j can simply be read off the state diagram of M. For ¢ > 0, 6*(, u; ;) is simply the
composition of the functions 6*(,u;—1,2j—1) and 0*(,u;—1,25), for all 1 < j < 2™, For example,
in Phase 1 of the example computation below, 6*(, bc) is the composition of 6*(,b) with 6*(,¢)

Example

Let M be given by the state diagram below. For simplicitly, we dispense with the clumsy “g;”
notation and write simply ¢. Thus @ = {0, 1,2}, the start state is 0, and F' = {2}.

a,CO i

Q=0
W2

Let w = aabcacbabceca. The sequential computation of M with input w takes 13 steps. Since
2 € F, w is accepted.

0-50-%0-"51-51-%2-%1-by0%0-by1 %1 -%1-%1-%9

Padding with blanks to obtain a length of 16, a power of 2, we let w* = aabcacbabcecaees.
Execute A in five phases using 16 processors.

a a b c a c b a b c c c a . . [
Ph O 0-00—~-00—»-10—~00~-~00~-00—»10—~00—»10—~-00—~-00—-00—-00—-00—00-—=0
ase . 1-»-21-231-501-»11—-»21-11—501—-21-»01—-11—-11—-11—-21—-11—-11-—1
251 2—-123y02—-12—-12—-12302—>123502—>212-212->12->212—>222-—>2 22
aa bc ac ba bc cc ae LX)
. 0—0 00— 1 0—0 00— 2 0— 1 0—~0 0—~0 0—0
Phase 1: 11 10 11 150 150 11 152 11
22 250 21 250 250 21 21 22
aabc acba bcce aeee
0—1 00— 2 0—1 0—0
Phase 150 150 150 1—2
2 -0 2 -0 2 -0 21
aabcacba bcccae e o
0—0 0—2
Phase 1—2 1—-0
2 -2 2—-0
aabcacbabcccae o o
0— 2
Phase 1.0
2—-0
. * o +
The computation at Phase 4 tells us that §*(0,aabcacbabcccases) = 2, a final state. Thus

aabcacbabceca € L.

