Regular Languages are \mathcal{NC} Let L be a regular language, and let M be a DFA which accepts (actually, decides) L. Using M, we design an \mathcal{NC} algorithm which decides L in $O(\log n)$ time using O(n) processors, where n is the length of the input string w. $M=(Q,\Sigma,\delta,q_0,F)$. Recall Q is the set of states of M,Σ is the input alphabet, $\delta:Q\times\Sigma\to Q$ is the transition function, $q_0\in Q$ is the start state, and $F\subseteq Q$ is the set of final states. We extend the transition function to $\delta^*:Q\times\Sigma^*\to Q$ inductively: $\delta^*(q,\lambda)=q$, and $\delta^*(q,aw)=\delta^*(\delta(q,a),w)$ for any $a\in\Sigma,q\in Q$. If $w\in\Sigma^*$, then $w\in L$, i.e., is accepted by M, if $\delta^*(q_0,w)\in F$. Equivalently, we describe the transition function of M by a function $\delta^*(\ ,x):Q\to Q$. for any $x\in\Sigma^*$; where $\delta^*(\ ,x)(q)=\delta^*(q,x)$ for all $q\in Q$. We now describe an \mathcal{NC} algorithm \mathcal{A} , which decides whether a given string is a member of L. To simplify our construction, we assume that the length of the input string is a power of 2, although it is a simple matter to generalize to arbitrary n: augument Σ with a special "do nothing" symbol •, which we call a blank. Define $\delta(q, \bullet) = q$ for any $q \in Q$. Let w^* be the string obtained by padding the input string w with just enough blanks to bring its length to a power of 2. For example, if w = aabcacbabbcaa we let $w^* = aabcacbabccaa \bullet \bullet \bullet$. Let $n = 2^m = |w^*|$. Let \mathfrak{S} be the set of consisting of all subintervals obtained by breaking w^* into 2^i pieces each of length 2^{m-i} , for all $0 \le i \le m$. Thus \mathfrak{S} consists of all subintervals of length 1, n/2 subintervals of length 2, n/4subintervals of length 4, and so forth; these will include 2 subintervals of length n/2 and one of length n, namely w itself. The cardinality of \mathfrak{S} is 2n-1. Each member of \mathfrak{S} of length 2^i , for i>0, is the concatenation of two members of \mathfrak{S} of length 2^{i-1} . We let $u_{i,j}$ be the j^{th} member of \mathfrak{S} of length 2^i , for $0 \leq i \leq m$ and $1 \leq j \leq 2^{n-i}$. That is, $u_{i,j}$ is the substring of w^* of length 2^i ending at the $(2^ij)^{\text{th}}$ place of w^* . \mathcal{A} has 1+m phases, which we number $0,1,\ldots m$. Phase i of \mathcal{A} computes $\delta^*(\cdot, u_{i,j})$ for all $1 \leq j \leq 2^i$, takes O(1) time and uses 2^{m-i} processors. The functions $\delta^*(\cdot, u_{0,j})$ for all j can simply be read off the state diagram of M. For i > 0, $\delta^*(\cdot, u_{i,j})$ is simply the composition of the functions $\delta^*(\ , u_{i-1,2j-1})$ and $\delta^*(\ , u_{i-1,2j})$, for all $1 \le j \le 2^{m-i}$. For example, in Phase 1 of the example computation below, $\delta^*(\ ,bc)$ is the composition of $\delta^*(\ ,b)$ with $\delta^*(\ ,c)$ ## Example Let M be given by the state diagram below. For simplicitly, we dispense with the clumsy " q_i " notation and write simply i. Thus $Q = \{0, 1, 2\}$, the start state is 0, and $F = \{2\}$. Let w = aabcacbabccca. The sequential computation of M with input w takes 13 steps. Since $2 \in F$, w is accepted. $$0 \xrightarrow{a} 0 \xrightarrow{a} 0 \xrightarrow{b} 1 \xrightarrow{c} 1 \xrightarrow{a} 2 \xrightarrow{c} 1 \xrightarrow{b} 0 \xrightarrow{a} 0 \xrightarrow{b} 1 \xrightarrow{c} 1 \xrightarrow{c} 1 \xrightarrow{c} 1 \xrightarrow{a} 2$$ Padding with blanks to obtain a length of 16, a power of 2, we let $w^* = aabcacbabccca \bullet \bullet \bullet$. Execute \mathcal{A} in five phases using 16 processors. The computation at Phase 4 tells us that $\delta^*(0, aabcacbabccca \bullet \bullet \bullet) = 2$, a final state. Thus $aabcacbabccca \in L$.