
Regular Languages are NC

Let L be a regular language, and let M be a DFA which accepts (actually, decides) L. Using M ,
we design an NC algorithm which decides L in O(log n) time using O(n) processors, where n is
the length of the input string w.

M = (Q,Σ, δ, q0, F). Recall Q is the set of states of M , Σ is the input alphabet, δ : Q×Σ → Q is
the transition function, q0 ∈ Q is the start state, and F ⊆ Q is the set of final states. We extend
the transition function to δ∗ : Q×Σ∗ → Q inductively: δ∗(q, λ) = q, and δ∗(q, aw) = δ∗(δ(q, a), w)
for any a ∈ Σ, q ∈ Q. If w ∈ Σ∗, then w ∈ L, i.e., is accepted by M , if δ∗(q0, w) ∈ F . Equivalently,
we describe the transition function of M by a function δ∗(, x) : Q → Q. for any x ∈ Σ∗; where
δ∗(, x)(q) = δ∗(q, x) for all q ∈ Q.

We now describe an NC algorithm A, which decides whether a given string is a member of L. To
simplify our construction, we assume that the length of the input string is a power of 2, although
it is a simple matter to generalize to arbitrary n: augument Σ with a special “do nothing” symbol
• , which we call a blank. Define δ(q, •) = q for any q ∈ Q. Let w∗ be the string obtained by
padding the input string w with just enough blanks to bring its length to a power of 2. For
example, if w = aabcacbabbcaa we let w∗ = aabcacbabccca• • • . Let n = 2m = |w∗|. Let S be the
set of consisting of all subintervals obtained by breaking w∗ into 2i pieces each of length 2m−i, for
all 0 ≤ i ≤ m. Thus S consists of all subintervals of length 1, n/2 subintervals of length 2, n/4
subintervals of length 4, and so forth; these will include 2 subintervals of length n/2 and one of
length n, namely w itself. The cardinality of S is 2n − 1. Each member of S of length 2i, for
i > 0, is the concatenation of two members of S of length 2i−1. We let ui,j be the jth member of
S of length 2i, for 0 ≤ i ≤ m and 1 ≤ j ≤ 2n−i. That is, ui,j is the substring of w∗ of length 2i

ending at the (2ij)th place of w∗. A has 1 +m phases, which we number 0, 1, . . .m. Phase i of A
computes δ∗(, ui,j) for all 1 ≤ j ≤ 2i, takes O(1) time and uses 2m−i processors. The functions
δ∗(, u0,j) for all j can simply be read off the state diagram of M . For i > 0, δ∗(, ui,j) is simply the
composition of the functions δ∗(, ui−1,2j−1) and δ∗(, ui−1,2j), for all 1 ≤ j ≤ 2m−i. For example,
in Phase 1 of the example computation below, δ∗(, bc) is the composition of δ∗(, b) with δ∗(, c)

1

Example

Let M be given by the state diagram below. For simplicitly, we dispense with the clumsy “qi”
notation and write simply i. Thus Q = {0, 1, 2}, the start state is 0, and F = {2}.

0 1

2

a,c c

a

b

b

a,cb

Let w = aabcacbabccca. The sequential computation of M with input w takes 13 steps. Since
2 ∈ F , w is accepted.

0
a

−→ 0
a

−→ 0
b

−→ 1
c

−→ 1
a

−→ 2
c

−→ 1
b

−→ 0
a

−→ 0
b

−→ 1
c

−→ 1
c

−→ 1
c

−→ 1
a

−→ 2

Padding with blanks to obtain a length of 16, a power of 2, we let w∗ = aabcacbabccca• • • .
Execute A in five phases using 16 processors.

Phase 0:

a

0 → 0

1 → 2

2 → 1

a

0 → 0

1 → 2

2 → 1

b

0 → 1

1 → 0

2 → 0

c

0 → 0

1 → 1

2 → 1

a

0 → 0

1 → 2

2 → 1

c

0 → 0

1 → 1

2 → 1

b

0 → 1

1 → 0

2 → 0

a

0 → 0

1 → 2

2 → 1

b

0 → 1

1 → 0

2 → 0

c

0 → 0

1 → 1

2 → 1

c

0 → 0

1 → 1

2 → 1

c

0 → 0

1 → 1

2 → 1

a

0 → 0

1 → 2

2 → 1

•

0 → 0

1 → 1

2 → 2

•

0 → 0

1 → 1

2 → 2

•

0 → 0

1 → 1

2 → 2

Phase 1:

aa

0 → 0

1 → 1

2 → 2

bc

0 → 1

1 → 0

2 → 0

ac

0 → 0

1 → 1

2 → 1

ba

0 → 2

1 → 0

2 → 0

bc

0 → 1

1 → 0

2 → 0

cc

0 → 0

1 → 1

2 → 1

a•

0 → 0

1 → 2

2 → 1

• •

0 → 0

1 → 1

2 → 2

Phase 2:

aabc

0 → 1

1 → 0

2 → 0

acba

0 → 2

1 → 0

2 → 0

bccc

0 → 1

1 → 0

2 → 0

a• • •

0 → 0

1 → 2

2 → 1

Phase 3:

aabcacba

0 → 0

1 → 2

2 → 2

bccca• • •

0 → 2

1 → 0

2 → 0

Phase 4:

aabcacbabccca• • •

0 → 2

1 → 0

2 → 0

The computation at Phase 4 tells us that δ∗(0, aabcacbabccca• • •) = 2, a final state. Thus
aabcacbabccca ∈ L.

2

