University of Nevada, Las Vegas Computer Science 456/656 Spring 2021
 Answers to Assignment 1: Due Wednesday January 25, 2023

1. Which of the strings $00,01001,10010,000,0000$ are accepted by the following NFA?

The computation with each input is shown. At each step, the state of the equivalent DFA, which is a member of 2^{Q}, is shown. The ' $*$ ' indicates that the state is final.
(a) Computation of 00 :
$0 \xrightarrow{0} 12 \xrightarrow{0} 02$
Not accepted.
(b) Computation of 01001:
$0 \xrightarrow{0} 12 \xrightarrow{1} 12 \xrightarrow{0} 02 \xrightarrow{0} 12 \xrightarrow{1}, 12$

	0	1
0	12	12
$* 1$	02	12
2	\emptyset	12
02	12	12
$* 12$	02	12

Accepted.
(c) Computation of 10010:00
$0 \xrightarrow{1} 12 \xrightarrow{0} 02 \xrightarrow{0} 12 \xrightarrow{1} 12 \xrightarrow{0}, 02$
Not accepted.
(d) Computation of 000:
$0 \xrightarrow{0} 12 \xrightarrow{0} 02 \xrightarrow{0} 12$
Accepted.
(e) Computation of 0000:
$0 \xrightarrow{0} 12 \xrightarrow{0} 02 \xrightarrow{0} 12$
$\rightarrow 001$
Not accepted.
2. Construct a DFA which accepts the language $\left\{b^{i} a b^{j}: i, j \geq 0\right\}$, the language of all strings over $\{a, b\}$ which contain exactly one a.

3. Can you find a DFA with three states that accepts the language of the figure given below? If not, can you give convincing arguments that no such DFA can exist?

Impossible. $L\left(q_{0}\right), L\left(q_{1}\right), L\left(q_{2}\right)$ and $L\left(q_{3}\right)$ are $\lambda, a, a b(a+b)^{*}$, and $a a(a+b)^{*}$, respectively. These regular expressions describe differerent languages, so no two states are equivalent.
4. Find a DFA equivalent to the NFA shown below.

5. Answer the 12 questions on page 3 of the handout regular-I.pdf.
(a) Since $\left|L_{1}\right|=\left|L_{2}\right|=3$, we would expect that $\left|L_{1} L_{2}\right|=9$. But it's only 8 . Why?

Because the string $b a b b$ is obtained in two different ways.
(b) Recall that \emptyset is the empty language. If L is some language, what is the concatenation $\emptyset L$?
\emptyset. The concatenation of the empty language with any language is the empty language.
(c) Let $L_{1}=\{\lambda\}$. the language consisting of only the empty string. If L_{2} is some other language, what is the concatenation $L_{1} L_{2}$?
L_{2}. The concatenation of $\{\lambda\}$ with any language is that language.
(d) Given two languages L_{1} and L_{2}, is the equation $L_{1} L_{2}=L_{2} L_{1}$ always true?

No, but it's not always false, either.
(e) What is L^{0} ?

No matter what L is, $L^{0}=\{\lambda\}$.
(f) Is the equation $\left.L_{1}\left(L_{2}+L_{3}\right)=L_{1} L_{2}+L_{1} L_{3}\right)$ always true?

Yes. That is one of the associative laws.
(g) What is \emptyset^{*}, the Kleene closure of the empty language?
$\{\lambda\}$. For any language $L, \lambda \in L^{*}$.
(h) What is $L^{* *}$?

Kleene closure is idempotent, that is, $L^{*} *=L^{*}$.
(i) Is the union of two regular languages always regular?

Yes.
(j) Is the intersection of two regular languages always regular?

Yes.
(k) Is the complement of a regular language always regular?
Yes.
(l) Is the Kleene closure of a regular language always regular?

Yes.
Union and intersection are idempotent, that is, $L+L=L$ and $L \cap L=L$.
6. Solve problems given in the handout finiteAutomata.pdf associated with the following figures.
(a) Figure 1.
L be the language accepted by the DFA. $L=\{10,101,1000,1011,1110, \ldots\}$ The binary numeral for n is in L if and only if n is positive and equivalent to 2 modulo 3 , that is, if $n \% 3=2$.
(b) Figure 3.

The original figure is lacking a dead state. In my class, I allow you to not draw the dead state of a DFA. If it were drawn, we would call it state 8 . We find that states 3 and 4 are equivalent, as are states 5 and 6 , as are states 1 and 7. There is still a dead state. Here is the transition table of the

	a	b
0	2	1
$1 / 7$	8	8
2	$3 / 4$	$3 / 4$
$3 / 4$	$5 / 6$	8
$5 / 6$	$1 / 7$	$3 / 4$
8	8	8

(c) Figure 5.

There are infinitely many correct answers. My answer is $a^{*} b\left(b+a\left(a^{*}(b+c)\right)^{*}\right.$, or alternatively, $a^{*} b\left(b+a a^{*} b+a a^{*} c\right)^{*}$
(d) Figure 11.

There are infinitely many correct answers. Here the obvious one:
$\left(a a+a b^{*} a+b b^{*} a\right)^{*}$
This can be simplified to: $\left(a a+(a+b) b^{*} a\right)^{*}$.
This can be simplified to:
$\left.(a+b) b^{*} a\right)^{*}$
That may be the simplest answer, but I'm not sure.

