University of Nevada, Las Vegas Computer Science 456/656 Spring 2023 Answers to Assignment 6: Due Saturday April 8, 2023

1. Give an $\mathcal{N C}$ algorithm which finds the maximum of n numbers is $O(\log n)$ time using $n / \log n$ processors. Let $m=\lceil n / \log n\rceil$. Let $x_{1} \ldots x_{n}$ be the numbers, and let $p_{1} \ldots p_{m}$ the processors. Partition the numbers into m batches of size no greater than $\lceil\log n\rceil$ and let y_{j} be the maximum of the $j^{\text {th }}$ batch. Processor j computes y_{j} in time which is a linear function of the size of the batch, that is, in $O(\log n)$ time. We then compute the overall maximum using the tournament method, in $O(\log m)$ steps. Initially, all $\left\{y_{j}\right\}$ are candidates for the maximum value. During each step, the candidates are compared, in pairs. Each pair is compared by one processor, and the smaller is discarded, in $O(1)$ time. Within $O(\log m)=O(\log n)$ steps, there is one remaining candidate, the maximum value.
2. Prove that every regular language is in Nick's Class.

Since we use "+" to denote "or," we use the summation sign to denote disjunction of serveral Booleans. For example, if $x_{1}, \ldots x_{n}$ are Boolean expressions, $\sum_{i=1}^{n} x_{i}$ means $x_{1}+\ldots+x_{n}$.

Let L be a regular language over an alphabet Σ, and let M be an NFA which accepts L. For simplicity, we do not allow M to have λ transitions. Let $Q=\left\{q_{0}, \ldots q_{m}\right\}$. be the states of M. Since the size of M does not change as we consider strings over Σ of any length, m is a constant. Let $F \subseteq Q$ be the final states of M, and $\delta: Q \times \Sigma \rightarrow 2^{Q}$ the transition function. Let $\delta^{*}: Q \times \Sigma^{*} \rightarrow 2^{Q}$ be the transitive closure of δ : that is, for any $u \in \Sigma^{*}, q_{j} \in \delta^{*}\left(q_{i}, u\right)$ means that if M is in state q_{i}, it could be in state q_{j} after reading the string u. For any $0 \leq i, j \leq m$ and any $u \in \Sigma^{*}$ define $S[i, u, j]$ to be the Boolean value which is true if and only if $q_{j} \in \delta^{*}\left(q_{i}, u\right)$.
Let $w \in \Sigma^{*}$, and let $n=|w|$. We can determine whether $w \in L$ in $O(\log n)$ time using $O\left(n^{2}\right)$ processors. Recall that $w \in L$ if and only if there is some $q_{j} \in F$ such that $S[0, w, j]$ is true. We execute a dynamic program where the subproblems are the $S[i, u, j]$. There are infinitely many such subproblems, but we only consider $O\left(n^{2}\right)$ of them, those for which u is a substring of w.
Observe that
(a) $S[i, \lambda, i]$ for all i.
(b) $S[i, \lambda, j]$ is false for all $i \neq j$.
(c) If $a \in \Sigma$ then $S[i, a, j]$ if and only if $q_{j} \in \delta\left(a, q_{i}\right)$
(d) Concatenation rule: for any $u, v \in \Sigma^{*}$ and any $q_{i}, q_{j} \in Q, S[i, u v, j]=\sum_{k=0}^{m} S[i, u, k] * S[k, v, j]$

The dynamic program is initialized using the first three rules. The remainder of the computation consists of repeatedly applying the concatenation rule, but only when $u v$ is a substring of w and $S[i, u, k]$ and $S[k, v, j]$ have already been computed. There are $O\left(n^{2}\right)$ such concatenation steps, since we only allow choices of u and v of approximately the same length, and we use one processor for each concatenation. After t time steps, $S[i, u, j]$ has been computed for every substring u of w of length no greater than 2^{t}. Thus, after $O(\log n)$ time, $S[i, w, j]$ has been computed for all i, j, and we are done.

Fewer Processors. The problem can actually be solved in $O(\log n)$ time using only $n / \log n$ processors. Do you see how?

