University of Nevada, Las Vegas Computer Science 456/656 Spring 2023 Answers to Assignment 7: Due Saturday April 29, 2023, 23:59

Name:_____

You are permitted to work in groups, get help from others, read books, and use the internet.

- 1. Determine whether each of these 2CNF expressions is satisfiable. If satisfieable, given a satisfying assignment. Otherwise, prove the expression is a contradiction.
 - (a) (!e+!f) * (!f+!b) * (!d+g) * (e+!j) * (!e+!i) * (!e+!b) * (!f+i) * (!d+g) * (!d+f) * (f+a) * (h+i) * (!j+f) * (!d+!h) * (!c+e) * (!c+a) * (!i+!h) * (!b+e) * (a+g) * (!c+!b) * (!f+g)

Satisfiable. There are serveral satisfying assignments. Here is one.

$$a = 1, b = 0, c = 0, d = 0, e = 0, f = 1, g = 1, h = 0, i = 1, j = 0$$

(b) (!i + f) * (h+!b) * (!h+!d) * (d + b) * (i+!i) * (e+!b) * (i + d) * (g+!d) * (!i + f) * (!f+!c) * (!c+!d) * (!b + i) * (h + i) * (!f+!h) * (!d + c) * (a+!h) * (i + d) * (!f+!a) * (!c+!h) * (c+!g)

Not satisfiable. Here is proof. Suppose the expression is satisfiable; Pick a satisfying assignment and assign each variable the value given by that assignment. Then each of the following clauses is true.

 $C_{1} = (!d + c)$ $C_{2} = (!c+!d)$ $C_{3} = (d + b)$ $C_{4} = (!b + i)$ $C_{5} = (!b + h)$ $C_{6} = (!i + f)$ $C_{7} = (!f+!h)$

We make repeated use of the fact that x * (!x + y) implies y, for any expressions By C_1 and C_2 , if d = 1, c and !c must both be true, contradiction; thus d = 0. We have $!d * C_3 = !d * (d + b)$, which implies b = 1. We have $b * C_4 = b * (!b + i)$, which implies i = 1We have $b * C_5 = b * (!b + h)$, which implies h = 1. We have $i * C_6 = i * (!i + f)$, which implies f = 1. We have $f * C_7 = f * (!f + !h)$, which implies h = 0. Contradiction. Thus the original expression is a contradiction, *i.e.* not satisfiable.

2. Give a polynomial time reduction of the subset sum problem to the partition problem.

Let $(\{x_1, x_2, \ldots, x_n\}, K)$ Be an instance of the subset sum problem. In the proof given in the handout, I assumed that all the x_i are positive. But this restriction is unnecessary.

Pick a number N which is larger than $\sum_{i=1}^{n} |x_i|$. Let $S = \sum_{i=1}^{n} x_i$. The reduction maps that instance of the subset sum problem to the instance $\{x_1, x_2, \ldots, x_n, K + N, S - K + N\}$ of the partition problem.

3. Give a proof that a recursively enumerable language is accepted by some machine.

Let M_1 be a machine which enumerates a language L. Let w_1, w_2, \ldots be that enumeration of L. Let M_2 be the machine whose computation is defined by the following program.

```
Read w
For i from 1 to \infty
If (w_i = w)
HALT and ACCEPT
```

 M_2 accepts L.

4. Give a proof that a language accepted by a machine is recursively enumerable.

Let M_2 be a machine which accepts a language L over an alphabet Sigma. Let $\Sigma^* = \{w_1, w_2, \ldots\}$ in canonical order. Let M_1 be the machine whose computation is defined by the following program.

```
For t from 1 to \infty
For i from 1 to t
If (M_1 \text{ accepts } w_i \text{ within } t \text{ steps})
Write w_i
```

Then M_1 enumerates L. (Repetition is allowed. Each string of L will be written infinitely many times. How would you eliminate this repetition?)

5. Give a context-sensitive grammar for $\{a^n b^n a^n : n \ge 1\}$.

There are many correct answers. Here is one: $S \rightarrow aba \mid aaAba$ $aA \rightarrow aaAA$ $Ab \rightarrow bA$ $bAa \rightarrow bbaa$ Here is a derivation of $a^3b^3a^3$: $S \Rightarrow aaAba \Rightarrow aaaAAba \Rightarrow aaaAbAc \Rightarrow aaaAbbaa \Rightarrow aaabAbaa \Rightarrow aaabbAaa \Rightarrow aaabbbaaa$ Here is a derivation of $a^4b^4a^4$: $S \Rightarrow aaAba \Rightarrow aaaAAba \Rightarrow aaaAbAa \Rightarrow aaaAbbaa \Rightarrow aaaaAbbaa \Rightarrow aaaaAbbaaa \Rightarrow aaaaAbbAaa \Rightarrow$

 $aaaaAbbbaaa \Rightarrow aaaabAbbaaa \Rightarrow aaaabbAbaaa \Rightarrow aaaabbbAaaa \Rightarrow aaaabbbbaaaa$

(a) Give a context-sensitive grammar for L.

Here is one: 1. $S \rightarrow a$ 2. AC3. $A \rightarrow AaB$ 4. $Ba \rightarrow aaB$ 5. $BC \rightarrow aC$ 6. $C \rightarrow a$ 7. $A \rightarrow a$

- (b) Using the grammar you gave for 6a, give derivations of the strings a, aa, aaaa, and aaaaaaaaa. $S \stackrel{1}{\Rightarrow} a$
 - $S \stackrel{2}{\Rightarrow} AC \stackrel{6}{\Rightarrow} Aa \stackrel{7}{\Rightarrow} aa$

 $S \stackrel{2}{\Rightarrow} AC \stackrel{3}{\Rightarrow} AaBC \stackrel{5}{\Rightarrow} AaaC \stackrel{6}{\Rightarrow} Aaaa \stackrel{7}{\Rightarrow} aaaa$

 $\begin{array}{c} S \stackrel{2}{\Rightarrow} AC \stackrel{3}{\Rightarrow} AaBC \stackrel{5}{\Rightarrow} AaaC \stackrel{3}{\Rightarrow} AaBaaC \stackrel{4}{\Rightarrow} AaaaBaC \stackrel{4}{\Rightarrow} AaaaaBaC \stackrel{4}{\Rightarrow} AaaaaaBC \stackrel{5}{\Rightarrow} AaaaaaaaC \stackrel{6}{\Rightarrow} Aaaaaaaa \stackrel{7}{\Rightarrow} aaaaaaaa \end{array}$

7. Prove that every context-sensitive language is recursive. (You may want to search the internet.)

Let G be a context-free grammar which generates the language L. Let Σ and Γ be the terminal alphabet and the variable alphabet of G, respectively.

The problem is to decide whether a given string $w \in \Sigma^*$ is in L. If $w = \lambda$, we can answer the question in O(1) time. Henceforth, assume that |w| = n > 0.

Recall that a sentential form of G is any string over $\Sigma + \Gamma$ which could occur in a derivation of G. Let $D_{[k]}$ be the set of sentential forms of G of length k. That set is finite. Since G is non-decreasing, $D[1] \subseteq \Sigma + \Gamma$ is easily computed, and D[k] can be computed from D[k-1]. Then $w \in L$ if and only if $w \in D[n]$.