University of Nevada, Las Vegas Computer Science 456/656 Spring 2023
 Answers to Assignment 7: Due Saturday April 29, 2023, 23:59

Name:
You are permitted to work in groups, get help from others, read books, and use the internet.

1. Determine whether each of these 2CNF expressions is satisfiable. If satisfieable, given a satisfying assignment. Otherwise, prove the expression is a contradiction.
(a) $(!e+!f) *(!f+!b) *(!d+g) *(e+!j) *(!e+!i) *(!e+!b) *(!f+i) *(!d+g) *(!d+f) *(f+a)$
$*(h+i) *(!j+f) *(!d+!h) *(!c+e) *(!c+a) *(!i+!h) *(!b+e) *(a+g) *(!c+!b) *(!f+g)$
Satisfiable. There are serveral satisfying assignments. Here is one.
$a=1, b=0, c=0, d=0, e=0, f=1, g=1, h=0, i=1, j=0$
(b) $(!i+f) *(h+!b) *(!h+!d) *(d+b) *(i+!i) *(e+!b) *(i+d) *(g+!d) *(!i+f) *(!f+!c)$
$*(!c+!d) *(!b+i) *(h+i) *(!f+!h) *(!d+c) *(a+!h) *(i+d) *(!f+!a) *(!c+!h) *(c+!g)$
Not satisfiable. Here is proof. Suppose the expression is satisfiable; Pick a satisfying assignment and assign each variable the value given by that assignment. Then each of the following clauses is true.
$C_{1}=(!d+c)$
$C_{2}=(!c+!d)$
$C_{3}=(d+b)$
$C_{4}=(!b+i)$
$C_{5}=(!b+h)$
$C_{6}=(!i+f)$
$C_{7}=(!f+!h)$

We make repeated use of the fact that $x *(!x+y)$ implies y, for any expressions
By C_{1} and C_{2}, if $d=1, c$ and $!c$ must both be true, contradiction; thus $d=0$.
We have $!d * C_{3}=!d *(d+b)$, which implies $b=1$.
We have $b * C_{4}=b *(!b+i)$, which implies $i=1$
We have $b * C_{5}=b *(!b+h)$, which implies $h=1$.
We have $i * C_{6}=i *(!i+f)$, which implies $f=1$.
We have $f * C_{7}=f *(!f+!h)$, which implies $h=0$.
Contradiction. Thus the original expression is a contradiction, i.e. not satisfiable.
2. Give a polynomial time reduction of the subset sum problem to the partition problem.

Let $\left(\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, K\right) \mathrm{Be}$ an instance of the subset sum problem. In the proof given in the handout, I assumed that all the x_{i} are positive. But this restriction is unnecessary.
Pick a number N which is larger than $\sum_{i=1}^{n}\left|x_{i}\right|$. Let $S=\sum_{i=1}^{n} x_{i}$. The reduction maps that instance of the subset sum problem to the instance $\left\{x_{1}, x_{2}, \ldots x_{n}, K+N, S-K+N\right\}$ of the partition problem.
3. Give a proof that a recursively enumerable language is accepted by some machine.

Let M_{1} be a machine which enumerates a language L. Let w_{1}, w_{2}, \ldots be that enumeration of L. Let M_{2} be the machine whose computation is defined by the following program.

Read w
For i from 1 to ∞
If $\left(w_{i}=w\right)$
HALT and ACCEPT
M_{2} accepts L.
4. Give a proof that a language accepted by a machine is recursively enumerable.

Let M_{2} be a machine which accepts a language L over an alphabet Sigma. Let $\Sigma^{*}=\left\{w_{1}, w_{2}, \ldots\right\}$ in canonical order. Let M_{1} be the machine whose computation is defined by the following program.

For t from 1 to ∞
For i from 1 to t
If (M_{1} accepts w_{i} within t steps)
Write w_{i}
Then M_{1} enumerates L. (Repetition is allowed. Each string of L will be written infinitely many times. How would you eliminate this repetition?)
5. Give a context-sensitive grammar for $\left\{a^{n} b^{n} a^{n}: n \geq 1\right\}$.

There are many correct answers. Here is one:
$S \rightarrow a b a \mid a a A b a$
$a A \rightarrow a a A A$
$A b \rightarrow b A$
$b A a \rightarrow b b a a$
Here is a derivation of $a^{3} b^{3} a^{3}$:
$S \Rightarrow a a A b a \Rightarrow a a a A A b a \Rightarrow a a a A b A c \Rightarrow a a a A b b a a \Rightarrow a a a b A b a a \Rightarrow a a a b b A a a \Rightarrow a a a b b b a a a$
Here is a derivation of $a^{4} b^{4} a^{4}$:
$S \Rightarrow a a A b a \Rightarrow a a a A A b a \Rightarrow a a a A b A a \Rightarrow a a a A b b a a \Rightarrow a a a a A A b b a a \Rightarrow a a a a A b A b a a \Rightarrow a a a a A b b A a a \Rightarrow$ $a a a a A b b b a a a \Rightarrow a a a a b A b b a a a \Rightarrow a a a a b b A b a a a \Rightarrow a a a a b b b A a a a \Rightarrow a a a a b b b b a a a a$
6. Let L be the language consisting of all strings of a 's of length a power of 2 . That is,
$L=\{a, a a, a a a a$, aaaaaaaa, aaaaaaaaaaaaaaaa,$\ldots\}$.
(a) Give a context-sensitive grammar for L.

Here is one:

1. $S \rightarrow a$
2. $A C$
3. $A \rightarrow A a B$
4. $B a \rightarrow a a B$
5. $B C \rightarrow a C$
6. $C \rightarrow a$
7. $A \rightarrow a$
(b) Using the grammar you gave for 6a, give derivations of the strings a, $a a$, aaaa, and aaaaaaaa. $S \stackrel{1}{\Rightarrow} a$
$S \stackrel{2}{\Rightarrow} A C \stackrel{6}{\Rightarrow} A a \stackrel{7}{\Rightarrow} a a$
$S \stackrel{2}{\Rightarrow} A C \stackrel{3}{\Rightarrow} A a B C \stackrel{5}{\Rightarrow} A a a C \stackrel{6}{\Rightarrow} A a a a \stackrel{7}{\Rightarrow} a a a a$
$S \stackrel{2}{\Rightarrow} A C \stackrel{3}{\Rightarrow} A a B C \stackrel{5}{\Rightarrow} A a a C \stackrel{3}{\Rightarrow} A a B a a C \stackrel{4}{\Rightarrow} A a a a B a C$
$\stackrel{4}{\Rightarrow}$ AaaaaaBC $\stackrel{5}{\Rightarrow}$ AaaaaaaC $\stackrel{6}{\Rightarrow}$ Aaaaaaaa $\stackrel{7}{\Rightarrow}$ aaaaaaaaa
$S \stackrel{2}{\Rightarrow} A C \stackrel{3}{\Rightarrow} A a B C \stackrel{5}{\Rightarrow} A a a C \stackrel{3}{\Rightarrow} A a B a a C \stackrel{4}{\Rightarrow} A a a a B a C \stackrel{4}{\Rightarrow}$ AaaaaaBC $\stackrel{5}{\Rightarrow}$ Aaaaaaa $C \stackrel{3}{\Rightarrow}$ AaBaaaaaaC $\stackrel{4}{\Rightarrow}$ AaaaBaaaaaC $\stackrel{4}{\Rightarrow}$ AaaaaaBaaaaC $\stackrel{4}{\Rightarrow}$ AaaaaaaaBaaaC $\stackrel{4}{\Rightarrow}$ AaaaaaaaaaBaaC $\stackrel{4}{\Rightarrow}$ AaaaaaaaaaaaBaC $\stackrel{4}{\Rightarrow}$ AaaaaaaaaaaaaaBC $\stackrel{5}{\Rightarrow}$ AaaaaaaaaaaaaaaC $\stackrel{6}{\Rightarrow}$ Aaaaaaaaaaaaaaaa $\stackrel{7}{\Rightarrow}$ aaaaaaaaaaaaaaaa
8. Prove that every context-sensitive language is recursive. (You may want to search the internet.)

Let G be a context-free grammar which generates the language L. Let Σ and Γ be the terminal alphabet and the variable alphabet of G, respectively.

The problem is to decide whether a given string $w \in \Sigma^{*}$ is in L. If $w=\lambda$, we can answer the question in $O(1)$ time. Henceforth, assume that $|w|=n>0$.

Recall that a sentential form of G is any string over $\Sigma+\Gamma$ which could occur in a derivation of G. Let $\left.D_{[} k\right]$ be the set of sentential forms of G of length k. That set is finite. Since G is non-decreasing, $D[1] \subseteq \Sigma+\Gamma$ is easily computed, and $D[k]$ can be computed from $D[k-1]$. Then $w \in L$ if and only if $w \in D[n]$.

