University of Nevada, Las Vegas Computer Science 456/656 Spring 2023 Review 1

- 1. True, False, or Open.
 - (a) _____ If S is an infinite set, then 2^S must be uncountable.
 - (b) All standard arithmetic and matrix operations, as well as square root, are \mathcal{NC} .
- 2. Label each of the following sets as countable or uncountable.
 - _____ The set of integers.
 - _____ The set of real numbers.
 - _____ The set of rational real numbers.
 - ----- The set of irrational real numbers.
 - _____ The set of binary languages.
 - _____ The set of co-RE binary languages.
 - _____ The set of decidable binary languages.
 - ----- The set of undecidable binary languages.
 - ----- The set of unary languages.
 - _____ The set of functions from integers to integers.
 - _____ The set of recursive real numbers.
 - ----- The set of algebraic numbers.

A number is algebraic if it is a root of a polynomial with integral coefficients.

3. Each language class is closed under which operators? Write "T" or "F" in each cell.

	union	intersection	$\operatorname{complement}$	concatenation	Kleene closure
regular					
NC					
context-free					
\mathcal{P} -time					
\mathcal{NP}					
$co-\mathcal{NP}$					
$\mathcal{P} ext{-space}$					
context-sensitive					
recursively enumerable					
co-recursively enumerable					
undecidable					

- 4. Which of these problems, or languages, are **known** to be \mathcal{NP} -complete? (Write T or F) _____TSP (traveling salesman)
 - _____partition

_____block sorting

_____equivalence of DFAs

- _____equivalence of NFAs
- _____equivalence of regular expressions
- _____equivalence of regular grammars
- _____equivalence of context-free grammars
- _____Boolean circuit problem
- ____2SAT
- _____3SAT
- ____4SAT
- _____generalized checkers (any size board)
- _____vertex cover
- _____independent set
- _____dominating set
- _____integer factoring with binary numerals
- _____Rush Hour
- ____Hex (the game)
- _____Nim (the game)

5. Fill in the ACTION and GOTO tables for the grammar given below, with start symbol E.

		x	+	-	*	()	\$	E
$1. E \to E +_2 E_3$	0								
2. $E \rightarrow E_{-4} E_5$	1							halt	
3. $E \rightarrow6 E_7$	2								
4. $E \rightarrow E *_8 E_9$	3								
$\begin{array}{ccc} 5. \ E \to (_{10}E_{11})_{12} \\ 6. \ E \to \infty \end{array}$	4								
$0. \ E \to x_{13}$	5								
	6								
	7								
	8								
-	9								
-	10								
	11								
	12								
	13								

6. Give a proof that the set of real numbers is uncountable.