University of Nevada, Las Vegas Computer Science 456/656 Spring 2023

Review 1

1. True, False, or Open.
(a) _--_--- If S is an infinite set, then 2^{S} must be uncountable.
(b) All standard arithmetic and matrix operations, as well as square root, are $\mathcal{N C}$.
2. Label each of the following sets as countable or uncountable.
\qquad The set of integers.
\qquad The set of real numbers.
_--------------- The set of rational real numbers.
-----_-_-_-_--- The set of irrational real numbers.
--_-_-_-_-_-_ The set of binary languages.
_---------------- The set of co-RE binary languages.
---------------- The set of decidable binary languages.
---------------- The set of undecidable binary languages.
----------------- The set of unary languages.
--_-_-_-_-_-_ The set of functions from integers to integers.
--_-_-_-_-_-_ The set of recursive real numbers.
_---------------- The set of algebraic numbers.
A number is algebraic if it is a root of a polynomial with integral coefficients.
3. Each language class is closed under which operators? Write "T" or "F" in each cell.

	union	intersection	complement	concatenation	Kleene closure
regular					
$\mathcal{N C}$					
context-free					
\mathcal{P}-TIME					
$\mathcal{N} \mathcal{P}$					
$\operatorname{co-} \mathcal{N P}$					
$\mathcal{P}-$ SPACE					
recursively enumerable					
co-recursively enumerable					
undecidable					

4. Which of these problems, or languages, are known to be $\mathcal{N} \mathcal{P}$-complete? (Write T or F)
--_-_TSP (traveling salesman)
----_-_partition
------_-_block sorting
------_-equivalence of DFAs
------_-_equivalence of NFAs
-------_equivalence of regular expressions
-----_-_equivalence of regular grammars
------_-equivalence of context-free grammars
--_-_-_Boolean circuit problem
------_-2SAT
------_-_3SAT
--_-_-_4SAT
_------_generalized checkers (any size board)
----_-_vertex cover
------_-_independent set
------_-dominating set
---_-_integer factoring with binary numerals
--_-_-_Rush Hour
------_Hex (the game)
------_Nim (the game)
5. Fill in the ACTION and GOTO tables for the grammar given below, with start symbol E.
6. $E \rightarrow E+{ }_{2} E_{3}$
7. $E \rightarrow E-{ }_{4} E_{5}$
8. $E \rightarrow-{ }_{6} E_{7}$
9. $E \rightarrow E *_{8} E_{9}$
10. $E \rightarrow\left({ }_{10} E_{11}\right)_{12}$
11. $E \rightarrow x_{13}$

	x	+	-	$*$	$($	$)$	$\$$	E
0								
1							halt	
2								
3								
4								
5								
6								
7								
8								
9								
10								
11								
12								
13								

6. Give a proof that the set of real numbers is uncountable.
