
University of Nevada, Las Vegas Computer Science 456/656 Spring 2021

Practice Problems for the Examination on February 8, 2023

- 1. Review answers to homework1: http://web.cs.unlv.edu/larmore/Courses/CSC456/S23/Assignments/hw1ans.pdf
- 2. Review answers to homework2: http://web.cs.unlv.edu/larmore/Courses/CSC456/S23/Assignments/hw2ans.pdf
- 3. Find a minimal DFA equivalent to the NFA shown below.

- 4. True or False. If the question is currently open, write "O" or "Open."
 - (i) _____ The complement of every regular language is regular.
 - (ii) _____ The complement of every context-free language is context-free.
 - (iii) _____ The complement of any \mathcal{P} -TIME language is \mathcal{P} -TIME.
 - (iv) _____ The complement of any \mathcal{NP} language is \mathcal{NP} .
 - (v) _____ The complement of any \mathcal{P} -SPACE language is \mathcal{P} -SPACE.
 - (vi) _____ The complement of every recursive language is recursive.
 - (vii) _____ The complement of every recursively enumerable language is recursively enumerable.
 - (viii) _____ Every language which is generated by a general grammar is recursively enumerable.
 - (ix) _____ The context-free membership problem is undecidable.
 - (x) _____ The factoring problem, where inputs are written in binary notation, is $co-\mathcal{NP}$.

 - (xii) _____ Given any context-free grammar G and any string $w \in L(G)$, there is always a unique leftmost derivation of w using G.
 - (xiii) _____ For any deterministic finite automaton, there is always a unique minimal non-deterministic finite automaton equivalent to it.

----- The question of whether two regular expressions are equivalent is known to be \mathcal{NP} -complete.

- (xiv) _____ The halting problem is recursively enumerable.
- (xv) _____ The union of any two context-free languages is context-free.
- (xvi) ______ The question of whether a given Turing Machine halts with empty input is decidable.
- (xvii) _____ The class of languages accepted by non-deterministic finite automata is the same as the class of languages accepted by deterministic finite automata.
- (xviii) _____ The class of languages accepted by non-deterministic push-down automata is the same as the class of languages accepted by deterministic push-down automata.
- (xix) _____ The intersection of any two context-free languages is context-free.
- (xx) _____ If L_1 reduces to L_2 in polynomial time, and if L_2 is \mathcal{NP} , then L_1 must be \mathcal{NP} .
- (xxi) _____ The language of all regular expressions over the binary alphabet is a regular language.
- (xxii) ______ Let π be the ratio of the circumference of a circle to its diameter. The problem of whether the n^{th} digit of the decimal expansion of π for a given n is equal to a given digit is decidable.
- (xxiii) _____ There cannot exist any computer program that can decide whether any two C++ programs are equivalent.-
- (xxiv) _____ An undecidable language is necessarily \mathcal{NP} -complete.
- (xxv) _____ Every context-free language is in the class \mathcal{P} -TIME.
- (xxvi) $_$ Every regular language is in the class \mathcal{NC}
- (xxvii) _____ Every Function that can be mathematically defined is recursive.
- (xxviii) _____ The language of all binary strings which are the binary numerals for prime numbers is context-free.
- (xxix) _____ The language of all binary strings which are the binary numerals for prime numbers is regular.
- (xxx) _____ Every bounded function from integers to integers is Turing-computable. (We say that f is bounded if there is some B such that $|f(n)| \leq B$ for all n.)-
- (xxxi) ______ The language of all palindromes over {0,1} is inherently ambiguous.
- (xxxii) ______ Every context-free grammar can be parsed by some deterministic top-down parser.
- (xxxiii) ______ -Every context-free grammar can be parsed by some non-deterministic top-down parser.
- (xxxiv) _____ Commercially available parsers cannot use the LALR technique, since most modern programming languages are not context-free.
- (xxxv) _____ The boolean satisfiability problem is undecidable.
- (xxxvi) ______ If anyone ever proves that $\mathcal{P} = \mathcal{NP}$, then all one-way encoding systems will be insecure.
- (xxxvii) _____ If a string w is generated by a context-free grammer G, then w has a unique leftmost derivation if and only if it has a unique rightmost derivation.

- (xxxviii) ______ -A language L is in \mathcal{NP} if and only if there is a polynomial time reduction of L to SAT.
- (xxxix) _____ Every subset of a regular language is regular.
 - (xl) ______ The intersection of any context-free language with any regular language is context-free.
 - (xli) ______ -Every language which is generated by a general grammar is recursively enumerable.
 - (xlii) ______ The question of whether two context-free grammars generate the same language is undecidable.
 - (xliii) ______ There exists some proposition which is true but which has no proof.
 - (xliv) _____ The set of all binary numerals for prime numbers is in the class \mathcal{P} .
 - (xlv) _____ If L_1 reduces to L_2 in polynomial time, and if L_2 is \mathcal{NP} , and if L_1 is \mathcal{NP} -complete, then L_2 must be \mathcal{NP} -complete.
 - (xlvi) Given any context-free grammar G and any string $w \in L(G)$, there is always a unique leftmost derivation of w using G.
 - (xlvii) _____ For any deterministic finite automaton, there is always a unique minimal non-deterministic finite automaton equivalent to it.
- (xlviii) _____ The question of whether two regular expressions are equivalent is \mathcal{NP} -complete.
- (xlix) ______ No language which has an ambiguous context-free grammar can be accepted by a DPDA.
 - (1) _____ The class of languages accepted by non-deterministic push-down automata is the same as the class of languages accepted by deterministic push-down automata.
 - (li) _____ The intersection of any two regular languages is regular.
 - (lii) _____ The intersection of any two context-free languages is context-free.
- (liii) _____ If L_1 reduces to L_2 in polynomial time, and if L_2 is \mathcal{NP} , then L_1 must be \mathcal{NP} .
- (liv) _____ Let F(0) = 1, and let $F(n) = 2^{F(n-1)}$ for n > 0. Then F is recursive.
- (lv) _____ Every language which is accepted by some non-deterministic machine is accepted by some deterministic machine.
- (lvi) _____ The language of all regular expressions over the binary alphabet is a regular language.
- (lvii) _____ Let π be the ratio of the circumference of a circle to its diameter. (That's the usual meaning of π you learned in school.) The problem of whether the n^{th} digit of π , for a given n, is equal to a given digit is decidable.
- (lviii) _____ There cannot exist any computer program that decides whether any two given C++ programs are equivalent.
- (lix) \ldots An undecidable language is necessarily \mathcal{NP} -complete.
- (lx) Every context-free language is in the class \mathcal{P} -TIME.

- (lxi) _____ Every function that can be mathematically defined is recursive.
- (lxii) _____ Every bounded function from integers to integers is Turing-computable. (We say that f is bounded if there is some B such that $|f(n)| \leq B$ for all n.)
- (lxiii) Every context-free language is in the class \mathcal{P} -TIME.
- (lxiv) _____ Every function that can be mathematically defined is recursive.
- (lxv) _____ The language of all binary strings which are the binary numerals for multiples of 23 is regular.
- (lxvi) ______ -Every bounded function from integers to integers is Turing-computable. (We say that f is bounded if there is some B such that $|f(n)| \leq B$ for all n.)-
- (lxvii) Commercially available parsers cannot use the LALR technique, since most modern programming languages are not context-free.
- (lxviii) _____ If anyone ever proves that $\mathcal{P} = \mathcal{NP}$, then all public key/private key encryption systems will be known to be insecure.
- (lxix) _____ If a sequence of fractions converges to a real number x, then x must be a recursive real number.

------ If a machine outputs a sequence of fractions which converges to a real number x, then x must be a recursive real number.