University of Nevada, Las Vegas Computer Science 456/656 Spring 2021

Practice Problems for the Examination on April 12, 2023

1. Review answers to homework5:
http://web.cs.unlv.edu/larmore/Courses/CSC456/S23/Assignments/hw5ans.pdf
2. Review answers to homework6:
http://web.cs.unlv.edu/larmore/Courses/CSC456/S23/Assignments/hw6ans.pdf
3. True or False. If the question is currently open, write "O" or "Open."
(i) ------- The language of all binary strings which are the binary numerals for multiples of 23 is regular.
(ii) _-_-_-_ If L is an $\mathcal{R E}$ (recursively enumerable) language and $w \notin L$, there must be proof that $w \notin L$.
(iii) ___-_ If L is a co- $\mathcal{R E}$ language and $w \notin L$, there must be proof that $w \notin L$.
(iv) ___-_ If L is a \mathcal{P}-SPACE language and $w \in L$, there must be a proof of polynomial length that $w \in L$.
(v) --_-_- If L is any \mathcal{P}-TIME language, there is a reduction of L to the Boolean circuit problem, and this reduction can be calculated in polylogarithmic time with polynomially many processors.
(vi) _------- Let $L=\left\{\left\langle G_{1}\right\rangle\left\langle G_{2}\right\rangle: G_{1}\right.$ is not equivalent to $\left.G_{2}\right\}$ Then L is recursively enumerable.
(vii) _-_--_- The complement of any \mathcal{P}-SPACE language is \mathcal{P}-SPACE.
(viii) -------- The complement of any $\mathcal{N P}$ language is $\mathcal{N P}$.
(ix) _------- The complement of every recursive language is recursive.
(x) _------ The complement of every recursively enumerable language is recursively enumerable.
(xi) _-_-_-_ Every language which is generated by a general grammar is recursively enumerable.
(xii) _------- The context-free language membership problem is undecidable.
(xiii) -------- The factoring problem, where inputs are written in binary notation, is co- $\mathcal{N} \mathcal{P}$.
(xiv) _-_-_--- The factoring problem, where inputs are written in unary (caveman) notation, is \mathcal{P}-TIME.
(xv) _-_-_-_ For any non-deterministic finite automaton, there is always a unique minimal deterministic finite automaton equivalent to it.
(xvi) ------- The question of whether two regular expressions are equivalent is known to be $\mathcal{N} \mathcal{P}$-complete.
(xvii) ------- The halting problem is recursively enumerable.
(xviii) ------- The intersection of any two context-free languages is context-free.
(xix) \qquad The question of whether a given Turing Machine halts with empty input is decidable.
(xx) _-_-_-_ The class of languages accepted by NTM's (non-deterministic Turing machines) is the same as the class of languages accepted by Turing machines.
(xxi) \qquad The class of languages accepted by non-deterministic push-down automata is the same as the class of languages accepted by deterministic push-down automata.
(xxii) ------- Let π be the ratio of the circumference of a circle to its diameter. The problem of whether the $n^{\text {th }}$ digit of the decimal expansion of π for a given n is equal to a given digit is decidable.
(xxiii) _-_-_-_ An undecidable language is necessarily $\mathcal{N} \mathcal{P}$-complete.
(xxiv) ------- Every context-free language is in the class \mathcal{P}-Time.
(xxv) _-_-_ Every regular language is in the class $\mathcal{N C}$
(xxvi) _-_-_-_ Let $L=\left\{a^{i} b^{j} c^{k}: i=j\right.$ or $\left.j=k\right\}$. Then L is not generated by any unambiguous context-free grammar.
(xxvii) ------- Every context-free grammar can be parsed by some deterministic top-down parser.
(xxviii) ------- Every context-free grammar can be parsed by some non-deterministic top-down parser.
(xxix) ------- Commercially available parsers do not use the LALR technique, since most modern programming languages are not context-free.
(xxx) -------- The boolean satisfiability problem is undecidable.
(xxxi) --_---- If anyone ever proves that the binary integer factorization problem is in \mathcal{P}-TIME, then all public key/private key encryption systems will be known to be insecure.
(xxxii) -------- If anyone ever proves that $\mathcal{P}=\mathcal{N} \mathcal{P}$, then all public key/private key encryption systems will be known to be insecure.
(xxxiii) ------- If a string w is generated by a context-free grammer G, then w has a unique leftmost derivation if and only if it has a unique rightmost derivation.
(xxxiv) ------ A language L is in $\mathcal{N} \mathcal{P}$ if and only if there is a polynomial time reduction of L to SAT.
(xxxv) ------- Every subset of a regular language is regular.
(xxxvi) -------- The intersection of any context-free language with any regular language is context-free.
(xxxvii) ------- Every language which is generated by a general grammar is recursively enumerable.
(xxxviii) ------- There exists some mathematical statement which is true but which has no proof.
(xxxix) _-_-_ The set of all binary numerals for prime numbers is in the class \mathcal{P}.
(xl) _------ If L_{1} reduces to L_{2} in polynomial time, and if L_{2} is $\mathcal{N} \mathcal{P}$, and if L_{1} is $\mathcal{N} \mathcal{P}$-complete, then L_{2} must be $\mathcal{N} \mathcal{P}$-complete.
(xli) _-_-_-- Given any context-free grammar G and any string $w \in L(G)$, there is always a unique leftmost derivation of w using G.
(xlii) \qquad For any deterministic finite automaton, there is always a unique minimal non-deterministic finite automaton equivalent to it.
(xliii) _-_-_--_ No language which has an ambiguous context-free grammar can be accepted by a DPDA.
(xliv) --_---- The class of languages accepted by non-deterministic push-down automata is the same as the class of languages accepted by deterministic push-down automata.
(xlv) ------- Let $F(0)=1$, and let $F(n)=2^{F(n-1)}$ for $n>0$. Then F is recursive.
(xlvi) _-_-_-_ The "Busy beaver" function is recursive.
(xlvii) -------- Let π be the ratio of the circumference of a circle to its diameter. (That's the usual meaning of π you learned in school.) The problem of whether the $n^{\text {th }}$ digit of π, for a given n, is equal to a given digit is decidable.
(xlviii) \qquad There is a machine that parses Pascal. (A parser for a computer language is a machine that constructs a correct parse tree for every valid program written in that language.)
(xlix) ------- There is a machine that parses C++. Hint: look this up on the internet.
(l) _-_-_-_ Every function that can be mathematically defined is recursive.
(li) _------- Every context-free language is in the class \mathcal{P}-TIME.
(lii) _------- The Post correspondence problem is undecidable.

For the next three problems, recall that a fraction is a string consisting of a numeral, follwed by a slash, followed by another numeral. Thus, any set of fractions is a language. If x is any real number, let $L_{L}(x)$ be the set of all fractions whose values are less than x, and let $L_{R}(x)$ be the set of all fractions whose values are greater than x.
(liii) _-_-_-_ If a sequence of fractions converges to a real number x, then x must be a recursive real number.
(liv) _------ If $L_{L}(x)$ is recursive, then then x must be a recursive real number.
(lv) -------- If $L_{L}(x)$ is recursively enumerable, then then x must be a recursive real number.
(lvi) _--_-_ If $L_{L}(x)$ and $L_{R}(x)$ are both recursively enumerable, then x must be a recursive real number.
4. State a problem, or language, that is known to be in the class $\mathcal{N} \mathcal{P}$, is not known to be \mathcal{P}-TIME, and is not known to be $\mathcal{N} \mathcal{P}$-complete.
5. Determine whether the following 2CNF Boolean expression is satisfiable. If so, give a satisfying assignment.

$$
\begin{aligned}
& (!d+g) *(!h+!d) *(f+e) *(e+!e) *(b+!j) *(!e+j) *(!i+c) *(a+d) *(g+!j) *(e+!c) *(!j+f) \\
& (b+i) *(d+!j) *(!h+!c) *(f+g) *(h+!c) *(!b+!j) *(!g+!j) *(a+c) *(!i+g)
\end{aligned}
$$

6. Prove that the halting problem is undecidable. Do it the way you should, not by quoting Lemma 2 .
