University of Nevada, Las Vegas Computer Science 456/656 Spring 2021

Practice Problems for the Examination on April 12, 2023

- Review answers to homework5: http://web.cs.unlv.edu/larmore/Courses/CSC456/S23/Assignments/hw5ans.pdf
- 2. Review answers to homework6: http://web.cs.unlv.edu/larmore/Courses/CSC456/S23/Assignments/hw6ans.pdf
- 3. True or False. If the question is currently open, write "O" or "Open."
 - (i) _____ The language of all binary strings which are the binary numerals for multiples of 23 is regular.
 - (ii) _____ If L is an \mathcal{RE} (recursively enumerable) language and $w \notin L$, there must be proof that $w \notin L$.
 - (iii) _____ If L is a co- \mathcal{RE} language and $w \notin L$, there must be proof that $w \notin L$.
 - (iv) _____ If L is a \mathcal{P} -space language and $w \in L$, there must be a proof of polynomial length that $w \in L$.
 - (v) _____ If L is any \mathcal{P} -TIME language, there is a reduction of L to the Boolean circuit problem, and this reduction can be calculated in polylogarithmic time with polynomially many processors.
 - (vi) _____ Let $L = \{ \langle G_1 \rangle \langle G_2 \rangle : G_1 \text{ is not equivalent to } G_2 \}$ Then L is recursively enumerable.
 - (vii) _____ The complement of any \mathcal{P} -SPACE language is \mathcal{P} -SPACE.
 - (viii) _____ The complement of any \mathcal{NP} language is \mathcal{NP} .
 - (ix) _____ The complement of every recursive language is recursive.
 - (x) _____ The complement of every recursively enumerable language is recursively enumerable.
 - (xi) _____ Every language which is generated by a general grammar is recursively enumerable.
 - (xii) _____ The context-free language membership problem is undecidable.
 - (xiii) _____ The factoring problem, where inputs are written in binary notation, is $co-\mathcal{NP}$.
 - (xiv) _____ The factoring problem, where inputs are written in unary (caveman) notation, is \mathcal{P} -TIME.
 - (xv) _____ For any non-deterministic finite automaton, there is always a unique minimal deterministic finite automaton equivalent to it.
 - (xvi) \dots The question of whether two regular expressions are equivalent is known to be \mathcal{NP} -complete.
 - (xvii) _____ The halting problem is recursively enumerable.
- (xviii) _____ The intersection of any two context-free languages is context-free.
- (xix) _____ The question of whether a given Turing Machine halts with empty input is decidable.

- (xx) _____ The class of languages accepted by NTM's (non-deterministic Turing machines) is the same as the class of languages accepted by Turing machines.
- (xxi) _____ The class of languages accepted by non-deterministic push-down automata is the same as the class of languages accepted by deterministic push-down automata.
- (xxii) _____ Let π be the ratio of the circumference of a circle to its diameter. The problem of whether the n^{th} digit of the decimal expansion of π for a given n is equal to a given digit is decidable.
- (xxiii) _____ An undecidable language is necessarily \mathcal{NP} -complete.
- (xxiv) $_$ Every context-free language is in the class \mathcal{P} -TIME.
- (xxv) _____ Every regular language is in the class \mathcal{NC}
- (xxvi) _____ Let $L = \{a^i b^j c^k : i = j \text{ or } j = k\}$. Then L is not generated by any unambiguous context-free grammar.
- (xxvii) _____ Every context-free grammar can be parsed by some deterministic top-down parser.
- (xxviii) _____ Every context-free grammar can be parsed by some non-deterministic top-down parser.
- (xxix) _____ Commercially available parsers do not use the LALR technique, since most modern programming languages are not context-free.
- (xxx) _____ The boolean satisfiability problem is undecidable.
- (xxxi) ______ If anyone ever proves that the binary integer factorization problem is in \mathcal{P} -TIME, then all public key/private key encryption systems will be known to be insecure.
- (xxxii) _____ If anyone ever proves that $\mathcal{P} = \mathcal{NP}$, then all public key/private key encryption systems will be known to be insecure.
- (xxxiii) $____$ If a string w is generated by a context-free grammer G, then w has a unique leftmost derivation if and only if it has a unique rightmost derivation.
- (xxxiv) _____ A language L is in \mathcal{NP} if and only if there is a polynomial time reduction of L to SAT.
- (xxxv) _____ Every subset of a regular language is regular.
- (xxxvi) _____ The intersection of any context-free language with any regular language is context-free.
- (xxxvii) _____ Every language which is generated by a general grammar is recursively enumerable.
- (xxxviii) _____ There exists some mathematical statement which is true but which has no proof.
- (xxxix) $_$ The set of all binary numerals for prime numbers is in the class \mathcal{P} .
 - (xl) _____ If L_1 reduces to L_2 in polynomial time, and if L_2 is \mathcal{NP} , and if L_1 is \mathcal{NP} -complete, then L_2 must be \mathcal{NP} -complete.
 - (xli) _____ Given any context-free grammar G and any string $w \in L(G)$, there is always a unique leftmost derivation of w using G.

- (xlii) _____ For any deterministic finite automaton, there is always a unique minimal non-deterministic finite automaton equivalent to it.
- (xliii) ______ No language which has an ambiguous context-free grammar can be accepted by a DPDA.
- (xliv) _____ The class of languages accepted by non-deterministic push-down automata is the same as the class of languages accepted by deterministic push-down automata.
- (xlv) _____ Let F(0) = 1, and let $F(n) = 2^{F(n-1)}$ for n > 0. Then F is recursive.
- (xlvi) _____ The "Busy beaver" function is recursive.
- (xlvii) _____ Let π be the ratio of the circumference of a circle to its diameter. (That's the usual meaning of π you learned in school.) The problem of whether the n^{th} digit of π , for a given n, is equal to a given digit is decidable.
- (xlviii) _____ There is a machine that parses Pascal. (A <u>parser</u> for a computer language is a machine that constructs a correct parse tree for every valid program written in that language.)
- (xlix) _____ There is a machine that parses C++. Hint: look this up on the internet.
 - (1) _____ Every function that can be mathematically defined is recursive.
 - (li) $_$ Every context-free language is in the class \mathcal{P} -TIME.
 - (lii) _____ The Post correspondence problem is undecidable.

For the next three problems, recall that a fraction is a string consisting of a numeral, followed by a slash, followed by another numeral. Thus, any set of fractions is a language. If x is any real number, let $L_L(x)$ be the set of all fractions whose values are less than x, and let $L_R(x)$ be the set of all fractions whose values are greater than x.

- (liii) $____$ If a sequence of fractions converges to a real number x, then x must be a recursive real number.
- (liv) _____ If $L_L(x)$ is recursive, then then x must be a recursive real number.
- (lv) _____ If $L_L(x)$ is recursively enumerable, then then x must be a recursive real number.
- (lvi) _____ If $L_L(x)$ and $L_R(x)$ are both recursively enumerable, then x must be a recursive real number.
- 4. State a problem, or language, that is known to be in the class \mathcal{NP} , is not known to be \mathcal{P} -TIME, and is not known to be \mathcal{NP} -complete.

5. Determine whether the following 2CNF Boolean expression is satisfiable. If so, give a satisfying assignment.

 $\begin{array}{l} (!d+g)*(!h+!d)*(f+e)*(e+!e)*(b+!j)*(!e+j)*(!i+c)*(a+d)*(g+!j)*(e+!c)*(!j+f) \\ (b+i)*(d+!j)*(!h+!c)*(f+g)*(h+!c)*(!b+!j)*(!g+!j)*(a+c)*(!i+g) \end{array}$

6. Prove that the halting problem is undecidable. Do it the way you should, not by quoting Lemma 2.