University of Nevada, Las Vegas Computer Science 456/656 Spring 2021

Answers to Practice Problems for the Examination on April 12, 2023

1. True or False. If the question is currently open, write "O" or "Open."
(i) \mathbf{T} The language of all binary strings which are the binary numerals for multiples of 23 is regular.
(ii) \mathbf{F} If L is an $\mathcal{R E}$ (recursively enumerable) language and $w \notin L$, there must be proof that $w \notin L$.
(iii) \mathbf{T} If L is a co- $\mathcal{R E}$ language and $w \notin L$, there must be proof that $w \notin L$.
(iv) \mathbf{O} If L is a \mathcal{P}-Space language and $w \in L$, there must be a proof of polynomial length that $w \in L$. If \mathcal{P}-SPACE $=\mathcal{N} \mathcal{P}$, then it's true.
(v) \mathbf{T} If L is any \mathcal{P}-TIME language, there is a reduction of L to the Boolean circuit problem, and this reduction can be calculated in polylogarithmic time with polynomially many processors.
(vi) \mathbf{T} Let $L=\left\{\left\langle G_{1}\right\rangle\left\langle G_{2}\right\rangle: G_{1}\right.$ is not equivalent to $\left.G_{2}\right\}$ Then L is recursively enumerable. Context-free grammar equivalence is co- $\mathcal{R E}$.
(vii) \mathbf{T} The complement of any \mathcal{P}-space language is \mathcal{P}-SPACE.
(viii) \mathbf{O} The complement of any $\mathcal{N} \mathcal{P}$ language is $\mathcal{N P}$.
(ix) \mathbf{T} The complement of every recursive language is recursive.
(x) \mathbf{F} The complement of every recursively enumerable language is recursively enumerable.
(xi) \mathbf{T} Every language which is generated by a general grammar is recursively enumerable.
(xii) \mathbf{F} The context-free language membership problem is undecidable.

The CYK algorithm decides that problem.
(xiii) \mathbf{T} The factoring problem, where inputs are written in binary notation, is co- $\mathcal{N} \mathcal{P}$.

I don't expect you to know the proof.
(xiv) \mathbf{T} The factoring problem, where inputs are written in unary (caveman) notation, is \mathcal{P}-TIME.
(xv) T For any non-deterministic finite automaton, there is always a unique minimal deterministic finite automaton equivalent to it.

That does back to the first part of the course.
(xvi) \mathbf{F} The question of whether two regular expressions are equivalent is known to be $\mathcal{N} \mathcal{P}$-complete.
(xvii) \mathbf{T} The halting problem is recursively enumerable.
(xviii) \mathbf{F} The intersection of any two context-free languages is context-free.
(xix) F The question of whether a given Turing Machine halts with empty input is decidable.
(xx) T The class of languages accepted by NTM's (non-deterministic Turing machines) is the same as the class of languages accepted by Turing machines.
(xxi) \mathbf{F} The class of languages accepted by non-deterministic push-down automata is the same as the class of languages accepted by deterministic push-down automata.
(xxii) \mathbf{T} Let π be the ratio of the circumference of a circle to its diameter. The problem of whether the $n^{\text {th }}$ digit of the decimal expansion of π for a given n is equal to a given digit d is decidable.
(xxiii) \mathbf{F} An undecidable language is necessarily $\mathcal{N} \mathcal{P}$-complete.

That was a trick question. All $\mathcal{N} \mathcal{P}$ languages are decidable
(xxiv) ___-_-_ Every context-free language is in the class \mathcal{P}-TIME.

By the CYK algorithm.
(xxv) T Every regular language is in the class $\mathcal{N C}$
(xxvi) \mathbf{T} Let $L=\left\{a^{i} b^{j} c^{k}: i=j\right.$ or $\left.j=k\right\}$. Then L is not generated by any unambiguous context-free grammar.
(xxvii) F Every context-free grammar can be parsed by some deterministic top-down parser.
(xxviii) T Every context-free grammar can be parsed by some non-deterministic top-down parser.
(xxix) F Commercially available parsers do not use the LALR technique, since most modern programming languages are not context-free.
(xxx) \mathbf{F} The boolean satisfiability problem is undecidable.
(xxxi) F If anyone ever proves that the binary integer factorization problem is in \mathcal{P}-TIME, then all public key/private key encryption systems will be known to be insecure.

RSA encryption will be known to be insecure, but there could be other encryption systems that would be unaffected.
(xxxii) \mathbf{T} If anyone ever proves that $\mathcal{P}=\mathcal{N} \mathcal{P}$, then all public key/private key encryption systems will be known to be insecure.
(xxxiii) T If a string w is generated by a context-free grammer G, then w has a unique leftmost derivation if and only if it has a unique rightmost derivation.

If and only if G is unambiguous.
(xxxiv) \mathbf{T} A language L is in $\mathcal{N P}$ if and only if there is a polynomial time reduction of L to SAT .
(xxxv) F Every subset of a regular language is regular.

Did anyone fall for this, after I've mentioned it many time?
(xxxvi) \mathbf{T} The intersection of any context-free language with any regular language is context-free.

I never proved this in class, but the proof is not terribly difficult.
(xxxvii) T Every language which is generated by a general grammar is recursively enumerable.
(xxxviii) T There exists some mathematical statement which is true but which has no proof.
(xxxix) \mathbf{F} The set of all binary numerals for prime numbers is in the class \mathcal{P}.
(xl) \mathbf{T} If L_{1} reduces to L_{2} in polynomial time, and if L_{2} is $\mathcal{N} \mathcal{P}$, and if L_{1} is $\mathcal{N} \mathcal{P}$-complete, then L_{2} must be $\mathcal{N} \mathcal{P}$-complete.

The usual method for finding new $\mathcal{N} \mathcal{P}$-complete probliems
(xli) \mathbf{F} Given any context-free grammar G and any string $w \in L(G)$, there is always a unique leftmost derivation of w using G.
(xlii) \mathbf{F} For any deterministic finite automaton, there is always a unique minimal non-deterministic finite automaton equivalent to it.

The other way around!
(xliii) -------- No language which has an ambiguous context-free grammar can be accepted by a DPDA.

We've done example of ambiguous grammars parsed by the LALR technique.
(xliv) \mathbf{F} The class of languages accepted by non-deterministic push-down automata is the same as the class of languages accepted by deterministic push-down automata.

Oops! Repeated question.
(xlv) T Let $F(0)=1$, and let $F(n)=2^{F(n-1)}$ for $n>0$. Then F is recursive.
(xlvi) \mathbf{F} The "Busy beaver" function is recursive.

It's on the internet.
(xlvii) -------- Let π be the ratio of the circumference of a circle to its diameter. (That's the usual meaning of π you learned in school.) The problem of whether the $n^{\text {th }}$ digit of π, for a given n, is equal to a given digit d is decidable.

You can write a program that prints the $n^{\text {th }}$ digit of π for any n.
(xlviii) T There is a machine that parses Pascal. (A parser for a computer language is a machine that constructs a correct parse tree for every valid program written in that language.)
(xlix) \mathbf{F} There is a machine that parses C++. Hint: look this up on the internet.

This is recently discovered flaw in C++.
(1) \mathbf{F} Every function that can be mathematically defined is recursive.

The busy beaver function.
(li) \mathbf{T} Every context-free language is in the class \mathcal{P}-time.

Repeat question! Use CYK.
(lii) \mathbf{T} The Post correspondence problem is undecidable.

You had to look that up. I do not expect you to understand the Post correspondence problem.
For the next three problems, recall that a fraction is a string consisting of a numeral, follwed by a slash, followed by another numeral. Thus, any set of fractions is a language. If x is any real number, let $L_{L}(x)$ be the set of all fractions whose values are less than x, and let $L_{R}(x)$ be the set of all fractions whose values are greater than x.
(liii) F If a sequence of fractions converges to a real number x, then x must be a recursive real number.

If so, every real number would be recursive.
(liv) \mathbf{T} If $L_{L}(x)$ is recursive, then then x must be a recursive real number.
$L_{R}(x)$ is the complement of $L_{L}(x)$, and is hence recursive. We can then construct an increasing sequence converging to x and also a decreasing sequence converging to x. This gives us decimal approximations to x of arbitrary accuracy, hence we can always find the $n^{\text {th }}$ digit.
(lv) \mathbf{F} If $L_{L}(x)$ is recursively enumerable, then then x must be a recursive real number.

This is really subtle. I'll try to explain it later.
(lvi) T If $L_{L}(x)$ and $L_{R}(x)$ are both recursively enumerable, then x must be a recursive real number.

Since $L_{R}(x)$ is the complement of $L_{L}(x)$, it is co- $\mathcal{R E}$. But it is also $\mathcal{R E}$, which means it is recursive, hence its complement $L_{L}(x)$ is also recursive. We have reduced the problem to (liv), hence x is recursive.
2. State a problem, or language, that is known to be in the class $\mathcal{N} \mathcal{P}$, is not known to be \mathcal{P}-TIME, and is not known to be $\mathcal{N} \mathcal{P}$-complete.

The binary numeral factorization problem.
3. Determine whether the following 2CNF Boolean expression is satisfiable. If so, give a satisfying assignment.
$(!d+g) *(!h+!d) *(f+e) *(e+!e) *(b+!j) *(!e+j) *(!i+c) *(a+d) *(g+!j) *(e+!c) *(!j+f)$
$(b+i) *(d+!j) *(!h+!c) *(f+g) *(h+!c) *(!b+!j) *(!g+!j) *(a+c) *(!i+g)$
$(!d+g) *(!h+!d) *(f+e) *(b+!j) *(!e+j) *(!i+c) *(a+d) *(g+!j) *(e+!c) *(!j+f)$
$(b+i) *(d+!j) *(!h+!c) *(f+g) *(h+!c) *(!b+!j) *(!g+!j) *(a+c) *(!i+g)$
$a=1 f=1$
$(!d+g) *(!h+!d) *(b+!j) *(!e+j) *(!i+c) *(g+!j) *(e+!c) *$
$(b+i) *(d+!j) *(!h+!c) *(h+!c) *(!b+!j) *(!g+!j) *(!i+g)$
Cycle in $G: b \rightarrow!j \rightarrow!e \rightarrow!c \rightarrow!i \rightarrow b$. Thus $b=!j=!e=!c=!i$
$(!d+g) *(!h+!d) *(b+b) *(b+!b) *(b+!b) *(g+b) *(!b+b) *$
$(b+i) *(d+b) *(!h+b) *(h+b) *(!b+b) *(!g+b) *(b+g)$
$(!d+g) *(!h+!d) *(b) *(g+b) *(d+b) *(!h+b) *(h+b) *(!g+b) *(b+g)$
$(!d+g) *(!h+!d) *(1) *(g+1) *(d+1) *(!h+1) *(h+1) *(!g+1) *(1+g)$
$b=1$, hence $j=e=c=i=0$
$(!d+g) *(!h+!d)$
$d=0$
$(1+g) *(!h+1)$
λ : satisfiable.
Satisfying assignment: $a=1, b=1, c=0, d=0, e=0, f=1, i=0, j=0, g, h$ any.
4. Prove that the halting problem is undecidable. Do it the way you should, not by quoting a theorem in a handout.

Assume the halting problem is decidable. Let D be a machine which executes the following program.
Read a machine description $\langle M\rangle$.
If (M halts with input $\langle M\rangle$)
Loop forever
Else halt.

Since the halting problem is decidable, the program will not get stuck evaluating the condition of the "if" statement.
Now run D with input $\langle D\rangle$.
If D accepts $\langle D\rangle$, then D will not accept $\langle D\rangle$ since it will loop forever. If D does not accept $\langle D\rangle$, then D halts, and hence accepts $\langle D\rangle$. We now have a contradiction, hence the machine D cannot exist, hence the halting problem is undecidable.

