University of Nevada, Las Vegas Computer Science 456/656 Fall 2023

Practice Problems for the Examination on October 25, 2023

1. Review answers to homework3:
http://web.cs.unlv.edu/larmore/Courses/CSC456/S23/Assignments/hw3ans.pdf
2. Review answers to homework4:
http://web.cs.unlv.edu/larmore/Courses/CSC456/S23/Assignments/hw4ans.pdf
3. Review answers to homework5:
http://web.cs.unlv.edu/larmore/Courses/CSC456/S23/Assignments/hw5ans.pdf
4. True or False. If the question is currently open, write "O" or "Open."
(i) $\mathbf{O} \mathcal{P}=\mathcal{N} \mathcal{P}$.
(ii) $\mathbf{O} \mathcal{P}=\mathcal{N C}$.
(iii) \mathbf{T} Every regular language is $\mathcal{N C}$.
(iv) \mathbf{T} Every context-free language is $\mathcal{N C}$.
(v) \mathbf{O} The Boolean circuit problem is $\mathcal{N C}$
(vi) \mathbf{T} The complement of any \mathcal{P}-Time language is \mathcal{P}-Time.
(vii) \mathbf{O} The complement of any $\mathcal{N} \mathcal{P}$ language is $\mathcal{N} \mathcal{P}$.
(viii) \mathbf{T} The complement of any \mathcal{P}-space language is \mathcal{P}-space.
(ix) \mathbf{T} The complement of every recursive language is recursive.
(x) \mathbf{F} The complement of every recursively enumerable language is recursively enumerable.
(xi) \mathbf{T} If p is the pumping length of a regular language L, then $p+1$ is also the pumping length of L.
(xii) \mathbf{T} If a language L is accepted by an NFA with p states, then p is the pumping length of L.
(xiii) \mathbf{T} Every language which is generated by a general grammar is recursively enumerable.
(xiv) \mathbf{F} The context-free membership problem is undecidable.
(xv) F Given any context-free grammar G and any string $w \in L(G)$, there is always a unique leftmost derivation of w using G.
(xvi) \mathbf{T} For any non-deterministic finite automaton, there is always a unique minimal deterministic finite automaton equivalent to it.
(xvii) \mathbf{T} The union of any two context-free languages is context-free.
(xviii) F The question of whether a given Turing Machine halts with empty input is decidable.
(xix) \mathbf{T} The class of languages accepted by non-deterministic finite automata is the same as the class of languages accepted by deterministic finite automata.
(xx) F The class of languages accepted by non-deterministic push-down automata is the same as the class of languages accepted by deterministic push-down automata.
(xxi) \mathbf{T} Let π be the ratio of the circumference of a circle to its diameter. The problem of whether the $n^{\text {th }}$ digit of the decimal expansion of π for a given n is equal to a given digit is decidable.
(xxii) \mathbf{T} There cannot exist any computer program that can decide whether any two C++ programs are equivalent.
(xxiii) \mathbf{F} An undecidable language is necessarily $\mathcal{N} \mathcal{P}$-complete.
(xxiv) \mathbf{T} Every context-free language is in the class \mathcal{P}-Time.
(xxv) T Every regular language is in the class $\mathcal{N C}$
(xxvi) F Every Function that can be mathematically defined is recursive.
(xxvii) F Every bounded function from integers to integers is Turing-computable. (We say that f is bounded if there is some B such that $|f(n)| \leq B$ for all n.)
(xxviii) The language of all palindromes over $\{0,1\}$ is inherently ambiguous.
(xxix) \mathbf{F} The boolean satisfiability problem is undecidable.
(xxx) \mathbf{T} If $\mathcal{P}=\mathcal{N} \mathcal{P}$, then all one-way encoding systems are breakable in polynomial time.
(xxxi) \mathbf{T} A language L is in $\mathcal{N} \mathcal{P}$ if and only if there is a polynomial time reduction of L to SAT.
(xxxii) F Every subset of a regular language is regular.
(xxxiii) \mathbf{T} The intersection of any context-free language with any regular language is context-free.
(xxxiv) \mathbf{T} The question of whether two context-free grammars generate the same language is undecidable.
(xxxv) T There exists some proposition which is true but which has no proof.
(xxxvi) \mathbf{T} If L_{1} reduces to L_{2} in polynomial time, and if L_{2} is $\mathcal{N} \mathcal{P}$, and if L_{1} is $\mathcal{N} \mathcal{P}$-complete, then L_{2} must be $\mathcal{N} \mathcal{P}$-complete.
(xxxvii) \mathbf{F} Given any context-free grammar G and any string $w \in L(G)$, there is always a unique leftmost derivation of w using G.
(xxxviii) bf O The question of whether two regular expressions are equivalent is $\mathcal{N} \mathcal{P}$-complete. (Do not guess. Look it up.)
(xxxix) F No language which has an ambiguous context-free grammar can be accepted by a DPDA.
(xl) \mathbf{T} The intersection of any two regular languages is regular.
(xli) F The intersection of any two context-free languages is context-free.
(xlii) \mathbf{T} If L_{1} reduces to L_{2} in polynomial time, and if L_{2} is $\mathcal{N} \mathcal{P}$, then L_{1} must be $\mathcal{N} \mathcal{P}$.
(xliii) T Let $F(0)=1$, and let $F(n)=2^{F(n-1)}$ for $n>0$. Then F is recursive.
(xliv) T Every language which is accepted by some non-deterministic machine is accepted by some deterministic machine.
(xlv) \mathbf{F} The language of all regular expressions over the binary alphabet is a regular language.
(xlvi) \mathbf{T} There cannot exist any computer program that decides whether any two given $\mathrm{C}++$ programs are equivalent.
(xlvii) \mathbf{F} An undecidable language is necessarily $\mathcal{N} \mathcal{P}$-complete.
(xlviii) \mathbf{T} Every context-free language is in the class \mathcal{P}-time.
(xlix) F Every function that can be mathematically defined is recursive.
(l) \mathbf{F} Every bounded function from integers to integers is recursive. (We say that f is bounded if there is some B such that $|f(n)| \leq B$ for all n.)
(li) \mathbf{F} Every function that can be mathematically defined is recursive.
(lii) \mathbf{T} The language of all binary strings which are the binary numerals for multiples of 23 is regular.
(liii) \mathbf{F} Let β be the busy beaver function. You know that β is not recursive, but there is some recursive function F such that $\beta(n)=O(F(n))$.
5. Which of the following languages or problems are known to be $\mathcal{N} \mathcal{P}$-complete? Write "T" if it is known to be $\mathcal{N} \mathcal{P}$-complete, " F " otherwise. (" O " is not an option for this problem.) You may have to seach the internet.
(i) T SAT
(ii) F 2-SAT
(iii) $\mathbf{T} 3$-SAT
(iv) \mathbf{T} 4-SAT
(v) $\mathbf{T} 5$-SAT
(vi) F Boolean Circuit.
(vii) F Context-free membership.
(viii) \mathbf{F} The language of all strings generated by a given unrestricted grammar.
(ix) \mathbf{F} The set of all solvable configurations of RUSH HOUR.
(x) T Given a big rectangle and a set of smaller rectangles, is it possible to place all the small rectangles into the big rectangle with no overlap?
(xi) T The block sorting problem. Given a list of n items and a number K, a "block move" moves a contiguous subset of items into another location in the list. Can the list be sorted with no more than K block moves? For example, ABCLMNODEFGHIJK can be sorted with 1 block move.
(xii) F Given a configuration in a game of generalized checkers (that means, any size board) can the black player force a win?
(xiii) \mathbf{T} The firehouse problem. Given a graph $G=(V, E)$ and numbers K and d, is there a set $F \subseteq V$ of size K such that every vertex is within at most d steps of some member of F ?
(xiv) \mathbf{T} The traveling salesman problem.
(xv) F Given a finite sequence σ of distinct integers, does σ have an increasing subsequence?
6. State the pumping lemma for regular languages.

See hw5ans.pdf.
7. Give a polynomial time reduction of the subset sum problem to the partition problem.

See hw5ans.pdf.

8. Give a polynomial time reduction of 3-SAT to the independent set problem.

See hw5ans.pdf.

9. This is not a question, but you must understand it!

A deteriministic machine has at most one computation for a given input, but a non-deterministic machine could have many possible computations. We say that a non-deterministic machine M accepts a string w if, given w as input, M has at least one computation that ends in an accepting state. If L is a language, we say M accepts L if M accepts every $w \in L$ and accepts no other strings.
If L is a language, we say that a non-deterministic machine M accepts L in polynomial time if M accepts L, and there is some constant k such that, for each $w \in L$, there is an accepting computation of M with input w consisting of $O\left(n^{k}\right)$ steps, where $n=|w|$.
$\mathcal{N} \mathcal{P}$-Time (or simply $\mathcal{N} \mathcal{P}$) is defined to be the class of all languages which are accepted by some machine in polynomial time.
10. I believe you will find this problem hard. But don't worry, it won't be on the test, although I really hope someone solves it.
Let L be the language consisting of all binary numerals for multiples of 5 . Then L is regular and has pumping length 5 . Let $w=1001011 \in L$. (Note that w is the binary numeral for 75 .) Find the pumpable substring of w. (In the statement of the pumping lemma, the pumpable substring is usually denoted y, that is, $x y^{i} z \in L$ for all $i \geq 0$.)

