Name:______________________________

You are permitted to work in groups, get help from others, read books, and use the internet. You will receive a message from the graduate assistant, Zachary Edwards, telling you how to turn in the assignment.

1. Identify which machine accepts the language defined by each regular expression.

(a) $a^* + b^*$
(b) λ
(c) a^*
(d) \emptyset
(e) $a(aa + b)^*$
(f) a^*b^*
(g) $(a + b)^*$
(h) $(ab)^*$

![Diagrams of machines M1 to M8]

2. True or False.

(a) _______ If L is any language, $L + L = L$
(b) _______ If L is any language, $L \cap L = L$
(c) _______ If L is any language, $\{\lambda\} \in L^*$.
3. Let $L_1 = \{a, ab\}$ and $L_2 = \{a, ba\}$. How many strings are there in the language $L_1 L_2$?
How many strings are there in the language $L_2 L_1$?

4. True or False. These are harder.

(a) _____ Any language consisting of all decimal numerals of an arithmetic sequence (for example:
$\{5 + 8n : n \geq 0\} = \{5, 13, 21, 29, 37, 45, \ldots\}$) is regular.

(b) _____ Let L be a regular binary language. Let L' be the language of all strings obtained from
members of L by substituting ab for 0 and c for 1. Then L' must be regular. For example, if $L =
\{0, 10, 10011\}$ then $L' = \{ab, cab, cababcc\}$.

5. Any NFA with n states is equivalent to some DFA with at most 2^n states, counting the dead state. Draw
a DFA equivalent to the following three state NFA. For just this problem, include the dead state in your
figure.

Show your work.