University of Nevada, Las Vegas Computer Science 456/656 Fall 2024

Assignment 2: Due Tuesday January 30, 2023, 11:59 PM

Name:
You are permitted to work in groups, get help from others, read books, and use the internet. You will receive a message from the graduate assistant, Zachary Edwards, telling you how to turn in the assignment.

1. Identify which machine accepts the language defined by each regular expression.
(a) $a^{*}+b^{*}$
(b) λ
(c) a^{*}
(d) \emptyset
(e) $a(a a+b)^{*}$
(f) $a^{*} b^{*}$
(g) $(a+b)^{*}$
(h) $(a b)^{*}$

M_{8}
2. True or False.
(a) _------ If L is any language, $L+L=L$
(b) _------- If L is any language, $L \cap L=L$
(c) _------ If L is any language, $\{\lambda\} \in L^{*}$.
3. Let $L_{1}=\{a, a b\}$ and $L_{2}=\{a, b a\}$. How many strings are there in the language $L_{1} L_{2}$? \qquad How many strings are there in the language $L_{2} L_{1}$? \qquad
4. True or False. These are harder.
(a) -------- Any language consisting of all decimal numerals of an arithmetic sequence (for example: $\{5+8 n: n \geq 0\}=\{5,13,21,29,37,45 \ldots\})$ is regular.
(b) \qquad Let L be a regular binary language. Let L^{\prime} be the language of all strings obtained from members of L by substituting $a b$ for 0 and c for 1 . Then L^{\prime} must be regular. For example, if $L=$ $\{0,10,10011\}$ then $L^{\prime}=\{a b, c a b, c a b a b c c\}$.
5. Any NFA with n states is equivalent to some DFA with at most 2^{n} states, counting the dead state. Draw a DFA equivalent to the following three state NFA. For just this problem, include the dead state in your figure.

Show your work.

