University of Nevada, Las Vegas Computer Science 456/656 Spring 2024 Answers to Assignment 1: Due Friday January 26, 2024

1. Let M_1 be the DFA shown below.

Let M_2 be the DFA shown below.

Let M_3 be the DFA shown below.

Which of the following languages is accepted by M_1 ? By M_2 ? By M_3 ?

- (a) I made a mistake drawing the state diagree for M_2 . State 3 is not supposed to be final The language of all binary strings in which every substring 00 is followed by 1 is not accepted by the original M_2 , but is if we change state 3 to be non-final.
- (b) The language of all strings over $\{a, b\}$ which end in b and which do not contain the substring bb is accepted by M_1 .
- (c) The language of all binary numerals for positive integers equivalent to 2 modulo 3 is accepted by M_3 .
- (d) The language of all strings over $\{a, b\}$ in which every b is followed by a is not accepted by any of the machines shown.

Construct a DFA which accepts the language $\{b^i a b^j : i, j \ge 0\}$, the language of all strings over $\{a, b\}$ which contain exactly one a. Your figure need not show the dead state.

- 2. Recall that \emptyset is the empty language. If L is some language, what is the concatenation $\emptyset L$? Ans: \emptyset
- 3. Let $L_1 = \{\lambda\}$. the language consisting of only the empty string. If L_2 is some other language, what is the concatenation L_1L_2 ? Ans: L_2
- 4. Is concatenation of languages commutative? That is, is the equation $L_1L_2 = L_2L_1$ always true? Ans: No.
- 5. Is it true that, for any language, $L^n L = L^{n+1}$? Ans: Yes.
- 6. Which of the following is true:
 - (a) If L is any language, $L^0 = L$.
 - (b) If L is any language, $L^0 = \emptyset$.
 - (c) If L is any language, $L^0 = \{\lambda\}$.

Hint: Think! Ans: False, False, True.

- 7. Does concatenation of languages distribute over union? That is, is $L_1(L_2 + L_3) = L_1L_2 + L_1L_3$ always true? Ans: Yes.
- 8. What is \emptyset^* , the Kleene closure of the empty language? Ans: $\{\lambda\}$.
- 9. What is L^{**} ? Ans: L^* . Kleene closure is idempotent.
- 10. Is the union of two regular languages always regular? Ans: Yes.
- 11. Is the intersection of two regular languages always regular? Ans: Yes.
- 12. Is the complement of a regular language always regular? Ans: Yes.
- 13. Is the Kleene closure of a regular language always regular? Ans: Yes.
- 14. The DFA M_1 shown in Problem 1 is not minimal, that is, it's equivalent to a DFA with fewer states. Can you draw a state diagram of that DFA? Your figure need not show the dead state.

