University of Nevada, Las Vegas Computer Science 456/656 Fall 2024 Assignment 2: Due Tuesday January 30, 2023, 11:59 PM

Name:_____

You are permitted to work in groups, get help from others, read books, and use the internet. You will receive a message from the graduate assistant, Zachary Edwards, telling you how to turn in the assignment.

- 1. Identify which machine accepts the language defined by each regular expression.
 - (a) $a^* + b^*$ M₇
 - (b) λ M₂
 - (c) a^* M₃
 - (d) \emptyset M₁
 - (e) $a(aa+b)^*$ M₈
 - (f) a^*b^* M₆
 - (g) $(a+b)^*$ M₄
 - (h) $(ab)^*$ M₅

2. True or False.

- (a) **T** If L is any language, L + L = L
- (b) **T** If L is any language, $L \cap L = L$
- (c) **T** If L is any language, $\lambda \in L^*$.

- 3. Let $L_1 = \{a, ab\}$ and $L_2 = \{a, ba\}$. How many strings are there in the language L_1L_2 ? 3 How many strings are there in the language L_2L_1 ? 4
- 4. True or False. These are harder.

(a) **T** Any language consisting of all decimal numerals of an arithmetic sequence (for example: $\{5 + 8n : n \ge 0\} = \{5, 13, 21, 29, 37, 45...\}$ is regular.

(b) **T** Let *L* be a regular binary language. Let *L'* be the language of all strings obtained from members of *L* by substituting *ab* for 0 and *c* for 1. Then *L'* must be regular. For example, if $L = \{0, 10, 10011\}$ then $L' = \{ab, cab, cababcc\}$.

5. Any NFA with n states is equivalent to some DFA with at most 2^n states, counting the dead state. Draw a DFA equivalent to the following three state NFA. For just this problem, include the dead state in your figure.

Show your work.

	a	b	с
0	01	0	1
1	2	2	2
2	Ø	Ø	Ø
01	012	02	12
02	01	0	1
12	2	2	2
012	012	02	12

