University of Nevada, Las Vegas Computer Science 456/656 Fall 2024

Assignment 2: Due Tuesday January 30, 2023, 11:59 PM

Name:
You are permitted to work in groups, get help from others, read books, and use the internet. You will receive a message from the graduate assistant, Zachary Edwards, telling you how to turn in the assignment.

1. Identify which machine accepts the language defined by each regular expression.
(a) $\begin{array}{ll}a^{*}+b^{*} & \mathrm{M}_{7}\end{array}$
(b) $\begin{array}{ll}\lambda & \mathrm{M}_{2}\end{array}$
(c) $a^{*} \quad \mathrm{M}_{3}$
(d) $\emptyset \quad \mathrm{M}_{1}$
(e) $a(a a+b)^{*} \quad \mathrm{M}_{8}$
(f) $a^{*} b^{*} \quad \mathrm{M}_{6}$
(g) $(a+b)^{*} \quad \mathrm{M}_{4}$
(h) $(a b)^{*} \quad \mathrm{M}_{5}$

2. True or False.
(a) \mathbf{T} If L is any language, $L+L=L$
(b) \mathbf{T} If L is any language, $L \cap L=L$
(c) \mathbf{T} If L is any language, $\lambda \in L^{*}$.
3. Let $L_{1}=\{a, a b\}$ and $L_{2}=\{a, b a\}$. How many strings are there in the language $L_{1} L_{2}$? 3

How many strings are there in the language $L_{2} L_{1}$? 4
4. True or False. These are harder.
(a) T Any language consisting of all decimal numerals of an arithmetic sequence (for example: $\{5+8 n: n \geq 0\}=$ $\{5,13,21,29,37,45 \ldots\}$ is regular.
(b) \mathbf{T} Let L be a regular binary language. Let L^{\prime} be the language of all strings obtained from members of L by substituting $a b$ for 0 and c for 1 . Then L^{\prime} must be regular. For example, if $L=\{0,10,10011\}$ then $L^{\prime}=\{a b, c a b, c a b a b c c\}$.
5. Any NFA with n states is equivalent to some DFA with at most 2^{n} states, counting the dead state. Draw a DFA equivalent to the following three state NFA. For just this problem, include the dead state in your figure.

Show your work.

	a	b	c
0	01	0	1
1	2	2	2
2	\emptyset	\emptyset	\emptyset
01	012	02	12
02	01	0	1
12	2	2	2
012	012	02	12

