University of Nevada, Las Vegas Computer Science 456/656 Spring 2024 Answers to Assignment 4: Due Saturday March 2, 2024

- 1. True or False, write T or F. If the answer is unknown to science at this time, write O, for Open.
 - (a) **T** If L is both \mathcal{RE} and co- \mathcal{RE} , then L is decidable.
 - (b) **T** SAT is decidable.
 - (c) **T** 2-SAT is \mathcal{P} -time.
 - (d) **T** The binary numeral primality problem is \mathcal{P} -TIME.
 - (e) **O** The binary numeral factorization problem is \mathcal{P} -TIME.
 - (f) **T** $\mathcal{NP} \subseteq \mathcal{P}$ -space.
 - (g) **T** Every context-sensitive language is decidable.
 - (h) **T** The complement of every undecidable language is undecidable.
 - (i) **T** The halting problem is \mathcal{RE} .
 - (j) **F** The context-free grammar equivalence problem is \mathcal{RE} .
 - (k) **F** Every undecidable language is either \mathcal{RE} or co- \mathcal{RE} .
 - (1) **F** There are countably many binary languages.
 - (m) **T** Every language has a canonical order enumeration.
 - (n) **F** For any real number x, the problem of whether a given rational number is less than x is decidable. (A rational number is a number that can be written as $\frac{p}{q}$, where p and q are integers.)
- 2. State the pumping lemma for context-free languages correctly.

For any context-free language Lthere exists a number p such that for any $w \in L$ of length at least pthere exist string u, v, x, y, and z such that the following four statements hold:

- 1. w = uvxyz,
- $2. |vxy| \le p,$
- 3. $|v| + |y| \ge 0$,
- 4. for any integer $i \ge 0$, $uv^i xy^i z \in L$.

3. Give a context-sensitive grammar for $L = \{a^n b^n c^n d^n : n \ge 1\}$

$\S \to abcd \mid aAbcd$	Generate strings <i>abcd</i> , <i>aabbccdd</i> and <i>aaabbbcccddd</i> using the grammar.
$Ab \rightarrow bA$	
$Ac \to cA$	$\underline{S} \Rightarrow abcd$
$Ad \rightarrow Bdd$	$\underline{S} \Rightarrow a\underline{AbcdRightarrowab\underline{Ac}d} \Rightarrow abc\underline{Ad} \Rightarrow ab\underline{cBd}d \Rightarrow a\underline{bBc}cdd \Rightarrow$
$cBd \rightarrow Bccd$	$\underline{aB}bbccdd \Rightarrow aabbccdd$
$cBc \rightarrow Bcc$	~
$bBc \rightarrow Bbbc$	$\underline{S} \Rightarrow \underline{aAbcd} \Rightarrow \underline{abAcd} \Rightarrow \underline{abcAd} \Rightarrow \underline{abcBdd} \Rightarrow \underline{abBccdd} \Rightarrow \underline{aBbbccdd} \Rightarrow$
$bBb \rightarrow Bbb$	$aa\underline{Ab}bccdd \Rightarrow aab\underline{Ab}ccdd \Rightarrow aabb\underline{Ac}cdd \Rightarrow aabbc\underline{Ac}dd \Rightarrow aabbcc\underline{Ad}d \Rightarrow$
$aB \rightarrow aa \mid aaA$	$aabbc\underline{cBd}dd \Rightarrow aab\underline{bc}Bccddd \Rightarrow aab\underline{bBc}ccddd \Rightarrow aa\underline{bBb}bcccddd \Rightarrow$
	$a\underline{aB}bbbcccddd \Rightarrow aaabbbcccddd$

4. Prove that the halting problem is undecidable.

See the handout.

5. Assuming that the subset sum problem is \mathcal{NP} -complete, prove that the partition problem is \mathcal{NP} -complete.

See the handout.

6. Assuming that 3-SAT is \mathcal{NP} -complete, prove that the independent set problem is \mathcal{NP} -complete.

See the handout.