UNLV CS456: Decide/Accept/Recognize

1. A deterministic machine M accepts a string w if, with input w, M halts in an accepting state.
2. A non-deterministic machine M accepts a string w if, with input w, some computation of M halts in an accepting state. Note: there could be many computations of M with input w, perhaps only one which ends in an accepting state. We assume M makes a correct guess at every step. ${ }^{1}$
3. Let $L(M)$ be the set of all strings accepted by M. We call $L(M)$ the language recognized by M. (Some sources use the word "accepted" instead of "recognized.") L is called recognizable if it is recognized by some machine.
4. A deterministic machine $M \subseteq \Sigma^{*}$ decides a language L if:
(a) $L=L(M)$
(b) M halts with every input.

We say a language is decidable if it is decided by some determinisiic machine.
5. Let T be a non-decreasing integral function on integers. A machine M accepts $w \in L(M)$ in time T if some computation of M with input w halts in an accepting state within $T(n)$ steps, where $n=|w|$.

Enumeration and Recursive Enumeration

An enumeration of a set X is a sequence which includes each member of X. We say X is enumerable if there exists an enumeration of X. The word countable means enumerable. We say a set is uncountable if it is not countable, i.e., has no enumeration. For example, \mathbb{R}, the set of all real numbers, is uncountable. Every subset of a countable set is countable, thus every language is countable, that is, enumerable. But that does not imply that an enumeration can be computed.

We say that a language L is recursively enumerable, or $\mathcal{R E}$, if there is a machine which writes an enumeration of L. If L is infinite, the machine must run forever.

Theorem 1 A language is recursively enumerable if and only if it is recognizable.
Proof: Let $L \subseteq \Sigma^{*}$ be a language and a machine writes an enumeration of M, w_{1}, w_{2}, \ldots The following program recognizes L.
read $w \in \Sigma^{*}$
for i from 1 to ∞
if $w=w_{i}$ write "yes" and halt.
Conversely, suppose M is a machine which recognizes L. Let w_{1}, w_{2}, \ldots be the canonical enumeration of Σ^{*}. The following program enumerates L.

[^0]for t from 1 to ∞.
for i from 1 to t
if M accepts w_{i} within the first t steps write w_{i}.

By the Church-Turing thesis, every recognizable language is enumerated by some Turing machine.

Canonical Order of a Language. Given a language L and two strings $u, v \in L$, we say that u is before v in canonical order, or simply $u<v$, if one of the following holds:

1. $|u|<|v|$
2. $|u|=|v|$. and u comes before v alphabetically. (We assume the alphabet of L is ordered.)

The canonical enumeration of $\{0,1\}^{*}$ is $\{\lambda, 0,1,00,01,10,11,000,001, \ldots\}$.
Theorem 2 A language L is decidable and only if some machine computes a canonical order enumeration of L.

Proof: Suppose M decides a language $L \subseteq \Sigma$. Let w_{1}, w_{2}, \ldots be the canonical enumeration of Σ. The following program enumerates L in canonical order.
for all i from 0 to ∞
If M accepts w_{i} (Note that M must halt.)
write w_{i}
Conversely, suppose a machine M enumerates a language $L \subseteq \Sigma$ in canonical order. Let w_{1}, w_{2}, \ldots be the enumeration of L in canonical order.

If L is finite, L is trivially recursive. On the other hand, if L is infinite, the following program decides L .

Read a string $w \in \Sigma^{*}$
for all i from 1 to ∞
if $w=w_{i}$
write "yes" and halt
else if $w>w_{i} / /$ in canonical order
write "no" and halt

By the Church-Turing thesis, every decidable language is enumerated in canonical order by some Turing machine.

[^0]: ${ }^{1}$ Yogi Berra, the famous baseball player, once while giving directions to his house said, "When you come to a fork in the road, take it."

