UNLV CS456: Decide/Accept/Recognize

- 1. A deterministic machine M accepts a string w if, with input w, M halts in an accepting state.
- 2. A non-deterministic machine M accepts a string w if, with input w, some computation of M halts in an accepting state. Note: there could be many computations of M with input w, perhaps only one which ends in an accepting state. We assume M makes a correct guess at every step.¹
- 3. Let L(M) be the set of all strings accepted by M. We call L(M) the language recognized by M. (Some sources use the word "accepted" instead of "recognized.") L is called recognizable if it is recognized by some machine.
- 4. A deterministic machine $M \subseteq \Sigma^*$ decides a language L if:

(a)
$$L = L(M)$$

(b) M halts with every input.

We say a language is *decidable* if it is decided by some deterministic machine.

5. Let T be a non-decreasing integral function on integers. A machine M accepts $w \in L(M)$ in time T if some computation of M with input w halts in an accepting state within T(n)steps, where n = |w|.

Enumeration and Recursive Enumeration

An enumeration of a set X is a sequence which includes each member of X. We say X is enumerable if there exists an enumeration of X. The word *countable* means enumerable. We say a set is *uncountable* if it is not countable, *i.e.*, has no enumeration. For example, \mathbb{R} , the set of all real numbers, is uncountable. Every subset of a countable set is countable, thus every language is countable, that is, enumerable. But that does not imply that an enumeration can be computed.

We say that a language L is *recursively enumerable*, or \mathcal{RE} , if there is a machine which writes an enumeration of L. If L is infinite, the machine must run forever.

Theorem 1 A language is recursively enumerable if and only if it is recognizable.

Proof: Let $L \subseteq \Sigma^*$ be a language and a machine writes an enumeration of M, w_1, w_2, \ldots The following program recognizes L.

read $w \in \Sigma^*$ for *i* from 1 to ∞

if $w = w_i$ write "yes" and halt.

Conversely, suppose M is a machine which recognizes L. Let w_1, w_2, \ldots be the canonical enumeration of Σ^* . The following program enumerates L.

 $^{^{1}}$ Yogi Berra, the famous baseball player, once while giving directions to his house said, "When you come to a fork in the road, take it."

```
for t from 1 to \infty.
for i from 1 to t
if M accepts w_i within the first t steps
write w_i.
```

By the Church-Turing thesis, every recognizable language is enumerated by some Turing machine.

Canonical Order of a Language. Given a language L and two strings $u, v \in L$, we say that u is *before* v in canonical order, or simply u < v, if one of the following holds:

- 1. |u| < |v|
- 2. |u| = |v|. and u comes before v alphabetically. (We assume the alphabet of L is ordered.)

The canonical enumeration of $\{0, 1\}^*$ is $\{\lambda, 0, 1, 00, 01, 10, 11, 000, 001, \ldots\}$.

Theorem 2 A language L is decidable and only if some machine computes a canonical order enumeration of L.

Proof: Suppose M decides a language $L \subseteq \Sigma$. Let w_1, w_2, \ldots be the canonical enumeration of Σ .

The following program enumerates L in canonical order.

for all *i* from 0 to ∞ If M accepts w_i (Note that M must halt.) write w_i

Conversely, suppose a machine M enumerates a language $L \subseteq \Sigma$ in canonical order. Let w_1, w_2, \ldots be the enumeration of L in canonical order.

If L is finite, L is trivially recursive. On the other hand, if L is infinite, the following program decides L.

Read a string $w \in \Sigma^*$ for all i from 1 to ∞ if $w = w_i$ write "yes" and halt else if $w > w_i$ // in canonical order write "no" and halt

By the Church-Turing thesis, every decidable language is enumerated in canonical order by some Turing machine.