
Grammars

Introduction

When I took Latin, starting in 1954, I felt intuitively that the grammar of the language was somehow

mathematical. But the highest math I knew was algebra, and I could not come up with any mathematical

formulation of Latin grammar.

In 1957, I finally read something about the theory of grammars. By that time Noam Chomsky had given

a mathematical definition of a formal grammar. Chomsky was trying to analyze natural languages, a

(possibly) hopeless task. Fortunately, we do not look at natural languages in this course. Instead, we deal

exclusively with formal languages and formal grammars. Henceforth, grammar means formal grammar.

Each grammar generates a language. A grammar G can be described by a string, which we call 〈G〉. A

grammar has a finite description, but might generate an infinite language.

There are classes of grammers, each of which generates a class of lenguages. Not all languages are generated

by grammars, but many important languages are.

Definition of a Grammar

A grammar G consists of the following parts.

1. Terminal alphabet Σ.

2. Variable alphabet V , The two alphabets may not have any symbol in common. Γ = Σ+ V is called

the alphabet of grammar symbols.

3. S ∈ V , the start symbol.1

4. Finite set of productions. Each production is of the form lhs→rhs, where lhs and rhs are strings of

grammar symbols, called the left-hand side and the right-hand-side of the production.

The left-hand side cannot be the empty string, and must be S for at least one production.

Classes of Grammars

Chomsky defines five classes of grammars.

1. Left-regular grammars. This class generates the class of regular languages.

2. Right-regular grammars. This class also generates the class of regular languages.

Those two classes are, together, called regular grammars. 3. Context-free grammars. This class

generates the class of context-free languages.

4. Context-sensitive grammars. This class generates the class of context-sensitive languages.

5. Unrestricted grammars. This class generates the class of recursively enumerable languages.

These classes are defined by properties of their right-hand sides and left-hand sides. For each class, there

must be at least one production whose lhs is the start symbol, which, by convention, is typically S.

1. For each production of a left-linear grammar, the lhs must be a single member of V . The right-hand-side

must be one of the following:

1There is no rule that the start symbol be called “S.” It could have any name.

1



(a) A terminal

(b) A terminal followed by a variable

(c) A variable

(d) The empty string

2. For each production of a right-linear grammar, the lhs must be a single member of V . The right-hand-

side must be one of the following:

(a) A terminal

(b) A variable followed by a terminal

(c) A variable

(d) The empty string

Left and right linear grammars are called regular grammars. Note: the (b) rules cannot be mixed. For

example, a regular grammer could not have both the productions A → aA and A → Ab.

Our definitions of linear grammars differs from the definitions given by Definition 3.3 in our textbook. In

that definition, only (a) and (b) are given. We have three justifications for this change.

(i) If we do not have (d), we cannot generate the empty string. But the empty string is a member of

many regular languages.

(ii) If we do not have (c), we have to go through unnecessary contortions to define a grammar which

generates the language accepted by an NFA which has a λ-transition.

(iv) With (a), (b), (c), and (d), it is easier to understand the construction or regular grammars

equivalent to finite automata.

(iii) Allowing (c) and (d) does no harm: we still get only regular languages.

3. For each production of a context-free grammar, the lhs must be a single member of Γ. The right-hand-

side can be any string of grammar symbols.

4. For each production of a context-sensitive grammar, the lhs and rhs must be non-empty strings of

grammar symbols, and the length of the rhs must be at least as great the the length of the lhs2

For each production of an unrestricted grammar, the lhs must be a non-empty string of grammar symbols,

while the rhs may be any string of grammar symbols.

Derivations

Let G be a grammar. A G-derivation of a string w ∈ Σ∗ is a sequence of strings over Γ connected by

the symbol “⇒,” which is read as the word “derives.” These strings are called sentential forms. In any

derivation of w, the first sentential form is simply the start symbol, and the last is w itself.

Each step of a derivation makes use of just one production. The lhs of that production is replaced by the

rhs of that same production. That is, if u and v are consecutive sentential forms, i.e., u ⇒ v, there must

be a production α → β such that α is replaced by β at that step. That is, there are strings x, y ∈ Γ∗ such

that

2This rule does not permit a context-sensitive language to contain the empty string. However, we usually want to allow

the empty string. We can achieve that by permitting the production S → λ, as long as S is not on the rhs of any production.

2



1. u = xαy

2. v = xβy

If productions are labeled, we sometimes place the label of the production above the “derives” symbol ⇒

for clarity.

The language generated by G, called L(G), is defined to be the language of all w ∈ Σ∗ which can be derived

from the start symbol.

Example. Let L = {anbm : n,m ≥ 0}, which is described by the regular expression a∗b∗. Then L is

generated by the regular grammar:

1. S → aS

2. S → B

3. B → bB

4. B → λ

We now give a G-derivation of w = aabbb.

S
1
⇒ aS

1
⇒ aaS

2
⇒ aaB

3
⇒ aabB

3
⇒ aabbB

3
⇒ aabbbB

4
⇒ aabbb

The above derivation proves that w is generated by G, that is, w ∈ L(G).

Computing a Regular Grammar from a DFA

Given any DFA M , there is a straightforward way to find a regular grammar which generates the language

accepted by M . Suppose Σ = {a1, . . . an} and Q = {q0, q1, . . . qm}.
3

We use δ to define a left-linear grammar G. We let Σ be the terminal alphabet of G. We let V =

{A0, A1, . . . Am} be the alphabet of variables. We let A0 be the start state of G. Each arrow in the state

diagram defines a production of the grammar, and each final state also defines a production.

If δ(qi, aj) = qk, Ai → ajAk is a production.

If qi is a final state, Ai → λ is a production.

Let M be the DFA illustrated in Figure 1.

0

2

1

a

b

ba

b

a

Figure 1

M has one final state and its state diagram has SIX arrows, thus G has seven productions:

3Again, to avoid clutter, we write merely “i” to denote “qi” in state diagrams.

3



1.A0 → aA0

2.A0 → bA1

3.A1 → bA1

4.A1 → aA2

5.A2 → aA0

6.A2 → bA1

7.A2 → λ

Here is a G-derivation of abbaba:

A0

1
⇒ aA0

2
⇒ abA1

3
⇒ abbA1

4
⇒ abbaA2

6
⇒ abbabA1

4
⇒ abbabaA2

7
⇒ abbaba

Computing a Regular Grammar from an NFA

Similarly, given an NFA M which accepts a language L, there is we can find a left-linear grammar which

generates L. Again, let Σ = {a1, . . . an} and Q = {q0, q1, . . . qm},

As in the case of a DFA, we let Σ be the terminal alphabet of G, and V = {A0, A1, . . . Am} the alphabet

of variables, and A0 the start state of G. As in the case of a DFA, each final state and each arrow in the

state diagram defines a production.

If qk ∈ δ(qi, aj), Ai → ajAk is a production.

If qk ∈ δ(qi, λ), Ai → Ak is a production.

If qi is a final state, Ai → λ is a production.

Let M be the NFA illustrated in Figure 2.

1

2

0

b

a

a

b
λ

Figure 2

M has one final state and its state diagram has five arrows, thus G has six productions:

1.A0 → aA0

2.A0 → aA1

3.A1 → bA2

4.A2 → bA0

5.A2 → A1

6.A2 → λ

Here is a G-derivation of aabbbab:

A0

1
⇒ aA0

2
⇒ aaA1

3
⇒ aabA2

5
⇒ aabA1

3
⇒ aabbA2

4
⇒ aabbbA0

2
⇒ aabbbaA1

3
⇒ aabbbabA2

6
⇒ aabbbab

The above derivation proves that aabbbab is generated by G, that is, aabbbab ∈ L(G).

4



By this constructiohn, we have the following theorem.

Theorem 1 If a language L is accepted by an NFA with n states, then L is generated by a left-linear

grammar with n variables.

Proof: We just use the above construction. The formal proof that it yields a left-linear grammar for the

same language is more detailed, but not too hard to understand.

Exercise 1 Give a regular grammar for the language accepted by M .

0 1 2 3 4

a,b

a,c a,b,c a,b,c a,b,c

Figure 3: NFA M for Exercise 1

Ans: M has five states, and the minimal DFA which accepts L(M) has 25 = 32 states. The following

regular grammar generates L(M), where A0 is the start state.

1. A0 → aA0

2. A0 → bA0

3. A0 → aA1

4. A0 → cA1

5. A1 → aA2

6. A1 → bA2

6. A1 → cA2

7. A2 → aA3

8. A2 → bA3

8. A2 → cA3

9. A3 → aA4

10. A3 → bA4

10. A3 → cA4

11. A4 → λ

Context-Free Grammars

A grammar G is context-free if, for every production, the left-hand side is one variable. We write CFG to

mean context-free grammar. The right hand side of production of a CFG can be any string of grammar

symbols. The class of context-free grammars is, arguably, the most important class of grammars we study.

A language L is called context-free if it is generated by some context-free grammar. We write CFL to mean

context-free language. Two grammars are said to be equivalent if they generate the same language. Every

context-free language is generated by infinitely many different equivalent context-free grammars.

Remark 1 Every regular language is a context-free language.

5



Proof: Every regular grammar is a context-free grammar.

Simple Examples

Simplest Example. The grammar G, where V = {S} and Σ = {a, b}, the start symbol is S, and the

productions are:

1. S → aSb

2. S → λ

L(G) = {anbn : n ≥ 0}, arguably the simplest non-regular context-free language.

Here is a G-derivation (or just derivation if G is understood) of w = aabb.

S ⇒ aSb ⇒ aaSbb ⇒ aabb

Dyck Language. The Dyck language is the language of all balanced strings of left and right parentheses,

which is over the alphabet Σ = {(, )}. Here are three grammars for the Dyck language. In each case, S is

the start symbol and Γ = {S}.

G1

1. S → (S)

2. S → SS

3. S → λ

G2

1. S → S(S)

2. S → λ

G3

1. S → (S)S

2. S → λ

Palindromes. A palindrome is a word which is its own reverse, such as “level” or “noon.” Let L be the

language of all palindromes over the alphabet a, b. L is generated by the CFG

1. S → aSa

2. S → bSb

3. S → a

4. S → b

5. S → λ

6



Derivations and Parse Trees

If G is a CFG and L = L(G), then each w ∈ L has at least one derivation, frequently multiple derivations.

For example, let L = {ancnbmdm : n,m ≥ 0}. Then L is generated by a grammar with variables S,A,B

and start symbol S:

1. S → AB

2. A → aAc

3. A → λ

4. B → bBd

5. B → λ

Let w = aaccbbbddd. Here are two derivations of w.

S ⇒ AB ⇒ aAcB ⇒ aaAccB ⇒ aaccB ⇒ aaccbBd ⇒ aaccbbBdd ⇒ aaccbbbBddd ⇒ aaccbbbddd

S ⇒ AB ⇒ AbBd ⇒ AbbBcc ⇒ AbbbBccc ⇒ Abbbddd ⇒ aAcbbbddd ⇒ aaAccbbbddd ⇒ aaccbbbddd

The first of these is a left-most derivation, since at each step of the derivation, the left-most variable of the

sentential form is replaced by the rhs of a production. For example, in the second step, A is replaced by

aAc and B is not replaced. Similarly, the second derivation is a right-most derivation.

Parse Trees. For each derivation of a string

w ∈ L(G), there is a parse tree of w. The internal

nodes of this tree are the variables in the deriva-

tion and each leaf is either a terminal or λ. The

two derivations of aaccbbbddd shown above give

rise to the same parse tree, shown to the right:

λ b d

b dB

b dB

B

B

λ

A

A

A

A ca

ca

S

Ambiguous and Unambiguous Grammars

A CFG G is called unambiguous if every string w ∈ L(G) has exactly one left-most derivation.

Theorem 2

(a) A CFG G is unambigous if and only if every string w ∈ L(G) has exactly one right-most derivation.

(b) A CFG G is unambigous if and only if every string w ∈ G(L) has exactly one parse tree.

A CFG is ambiguous if it is not unambiguous. A CFL is called inherently ambiguous if it has no unam-

biguous CFG.

The grammar G1 for the Dyck language is ambigous, while G2 and G3 are both unambiguous.

7



Dangling Else

Let G be the following context-free grammar, with start symbol S and terminals {a, i, e}

1. S → a

2. S → iS

3. S → iSeS

Exercise 2 Show that G is ambiguous by giving two parse trees for the string iiaea.

L(G) does have an unambigous grammar, but it is more complex than the ambiguous grammar.

G models the “dangling else” problem for programming languages. In the following C++ fragment, what

value will be output?

int x = 0;

int y = 0;

int z = 3;

if(x == 1)

if(y == 0)

z = 2;

else z = 4;

cout << z << endl;

Ans: C++ is not actually a CFL, but it has an “underlying” CF grammar which is ambiguous, like the

grammar above. The “dangling else” ambiguity is resolved during the parsing phase of the compiler. Each

“else” is paired with the nearest “if” if there is a choice. For example the “else” on line 7 is paired with

the “if” on line 5. Thus the output is 3.

Simple CF Exercises

1. Find a CFG for L = {ambn : 0 ≤ n ≤ m}

Ans:

1. S → aS

2. S → B

3. B → aBb

4. B → λ

This grammar is unambiguous.

2. Find a simple CFG for the language L = {anbmcn : n,m ≥ 0}

Ans: There are many correct answers. Here is (perhaps) the simplest one:

1. S → aSc

2. S → B

3. B → bB

4. B → λ

This grammar is unambiguous.

8



3. Find a CFG for L = {aibjck : i, j, k ≥ 0 and either i = j or j = k}

Ans:

1. S → S1

2. S → S2

3. S1 → S1c

4. S1 → A

5. A → aAb

6. A → λ

7. S2 → aS2

8. S2 → C

9. C → bCc

10. C → λ

This grammar is ambiguous. Can you prove it?

Ans:

There are two parse trees for abc.

Actually, L is inherently ambiguous.

4. (a) Find a CFG for L = {anbncn : n ≥ 0}

Ans: There is no answer. L is not context-free.

(b) Let L′ be the complement of L. That is, L′, L′ = {w ∈ Σ∗ : w /∈ L}, where Σ = {a, b, c}.

Prove that L′ is a CFL.

Context-Sensitive Grammars

There are two definitions of context-sensitive grammars. The standard definition found on Wikipedia is

hard to work with, but our textbook (Linz) gives an algernative definition which is simpler, which I give

below.

Definition: A grammar is context-sensitive if the left side of every production is exactly the start symbol

and the right side of production is at least as long (number of symbols) as the left side. However a CSG

cannot generate the empty string, thus, we define a language L to be context-sensitive if there is a context

sensitive grammar G such that either L = L(G) or L = L(G) + {λ}.

Example. Let L = {anbncn : n ≥ 0}. The empty string is a member of L, but if we delete the empty

string, we obtain the language L′ = {anbncn : n ≥ 1}, which is generated by the CSG G below:

1. S → abc

2. aAbc

3. Ab → bA

4. Ac → Bbcc

5. bB → Bb

6. aB → aa

7. aaA

9



Here is the derivation of aaabbbccc using that G:

S ⇒ aAbc ⇒ abAc ⇒ abBbcc ⇒ aBbbcc ⇒ aaAbbcc ⇒ aabAbcc ⇒ aabbAcc ⇒ aabbBbccc ⇒ aabBbbccc ⇒

aaBbbbccc ⇒ aaabbbccc

Exercise: For each step of the above derivation, identify which production is used.

Exercise: Find a CSG for the language {an : n is a power of 2}

General Grammars

Every grammar is a general grammar.

The Chomsky Hierarchy

The Chomsky hierarchy names three types of languages:

• Type 0: Languages generated by any grammar. These languages are recursively enumerable lan-

guages, including some undecidable languages. These are precisely the languages which are accepted

by Turing machines.

• Type 1: Context-sensitive languages. CSLs are the languages which are accepted by linear bounded

automata.4

• Type 2: Context-free languages. CFLs are the languages which are accepted by Push-down automata

(PDAs).

• Type 3: Regular languages. Regular languages are those generated by regular grammars. These

languages are accepted by finite automata, either DFAs or NFAs. (But remember, a DFA is also an

NFA.)

• The types are nested. Every type 3 language, is also type 2, while every type 2 is also type 1, and

every type 1 is type 0.

Regular

Chomsky Hierarchy of Grammars

Context−free Context−sensitive Unrestricted

Exercise: Find a recursively enumerable language which is not context-sensitive.

4I will not expect you to learn what a linear bounded automaton is in this course.

10


