
The Halting Problem is Undecidable

We define the language HALT to be the set of all strings of the form 〈M〉w such that M halts

with input w. HALT is the language which is equivalent to the halting problem.

Theorem 1 HALT is not decidable.

Proof: By contradiction. Suppose HALT is decidable. Let D be a machine which implements the

following program:

read a machine description 〈M〉.
if M halts with input 〈M〉
run forever.

else

halt.

We now run D with input 〈D〉. One of the following two cases must hold.

Case 1. D halts with input 〈D〉. That means that, when D reads 〈D〉, it runs forever, hence D
does not halt with input 〈D〉, contradiction.

Case 2. D does not halt with inpu 〈D〉. That means that, when D reads 〈D〉, it halts, hence D
halts with input 〈D〉, contradiction.

In either case, we obtain a contradiction, hence HALT is undecidable.

Theorem 2 HALT is recognizable.

Proof: The following program P recognizes HALT.

read 〈M〉w
run M with input w.
if the M halts with input w
accept 〈M〉w.

Thus, P accepts every member of HALT, but no other string.

Note that the program will run forever if 〈M〉w /∈ HALT.

1


