The Halting Problem is Undecidable

We define the language HALT to be the set of all strings of the form $\langle M \rangle w$ such that M halts with input w. HALT is the language which is equivalent to the halting problem.

Theorem 1 HALT is not decidable.

Proof: By contradiction. Suppose HALT is decidable. Let D be a machine which implements the following program:

read a machine description $\langle M \rangle$.
if M halts with input $\langle M \rangle$
 run forever.
else
 halt.

We now run D with input $\langle D \rangle$. One of the following two cases must hold.

Case 1. D halts with input $\langle D \rangle$. That means that, when D reads $\langle D \rangle$, it runs forever, hence D does not halt with input $\langle D \rangle$, contradiction.

Case 2. D does not halt with input $\langle D \rangle$. That means that, when D reads $\langle D \rangle$, it halts, hence D halts with input $\langle D \rangle$, contradiction.

In either case, we obtain a contradiction, hence HALT is undecidable.

Theorem 2 HALT is recognizable.

Proof: The following program P recognizes HALT.

read $\langle M \rangle w$
run M with input w.
if the M halts with input w
 accept $\langle M \rangle w$.

Thus, P accepts every member of HALT, but no other string.

Note that the program will run forever if $\langle M \rangle w \notin$ HALT.