
LALR Parsing Handout 1

Some, but not all, context-free languages can be parsed with an LALR parser. The input of the
parser is a string in the language, while the output is an abbreviated reverse rightmost derivation
of the input.

Here is a context-free grammar G for a “toy” algebraic language, whose start symbol is E (for
expression), followed by the ACTION and GOTO tables for an LALR parser for G. The actions
are labeled 1. . . 3 in this example.

1. E → E + E

2. E → E ∗ E

3. E → a

The symbol a represents any variable.

The parser stack contains grammar symbols, and each of those symbols must have an associated
stack state written as a subscript. The bottom of stack symbol has the subscript 0. In this
example, the stack states are 0. . . 6. The state 0 is reserved for the bottom of stack symbol, $.

We annotate the right-hand sides of the production with stack states:
1. E → E1,3,5 +2 E3

2. E → E1,3,5 ∗4 E5

3. E → a6

action goto

a + ∗ $ E

0 s6 1

1 s2 s4 halt

2 s6 3

3 r1 s4 r1

4 s6 5

5 r2 r2 r2

6 r3 r3 r3

The LALR parser has three parts: the stack which grows and shrinks, the input file from which
symbols are read one at a time, and the output file. We use $ for both bottom of stack and
end of file. We assume 1-lookahead, i.e., the parser can peek at the next input symbol without
necessarily reading it. The parser can also peek at the top stack state without necessarily poppling
it.

Steps of the LALR Parser. The LALR parser operates in steps. At each step the parser
peeks at the top stack state and the next input symbol, which may be either a terminal of the
language or the end of file symbol.

Each row of the table is headed by a stack state, a number from 0. . .6 in this case. The columns
of the ACTION table are labeled by the possible input symbols, including the bottom-of-stack
symbol $. Each column of the GOTO table is headed by a variable of the grammar; in this
example, there is only one variable, the start symbol E.

1

A step operates as follows.

1. Peek at the top stack state and the next input symbol, and follow the instructions in the
appropriate entry. A blank entry means that that combination of stack state and input
symbol will never occur if the input string is a generated by G.

2. There are three kinds of actions, halt, shift, and reduce. halt means that the parser if
finished. The input file will be empty and the stack will consist of the bottom-of-stack
symbol with stack state 0, followed by the start symbol with stack state 1, i.e., E1 in our
example.

3. The action shift is written as s followed by a stack state N. At this action the current input
symbol is read, then pushed onto the stack, and given the stack state N.

4. If the action is r following by a number, that number must be the label of one of the
productions. The top one or more symbols in the stack will be the right hand side of that
production, along with stack states. That string is called a handle. The entire handle is
popped, and then the left-hand side of the production is pushed. The left hand side will be
a variable. It will be given a stack state as determined by the GOTO table, which depends
on the stack state onto which the variable is pushed. The production label is then written
to the output file.

At any given step, the stack, the remaining input, and the output constitute the id (instantaneous
description) of the parser.

Example Computations. We show the computation of our LALR for two input strings. For
the first example, let the input string be w = a ∗ a+ a. The rightmost derivation of w is

E
1
⇒ E + E

3
⇒ E + a

2
⇒ E ∗ E + a

3
⇒ E ∗ a+ a

3
⇒ a ∗ a+ a

The output is 33231, the abbreviated1 reverse rightmost derivation of the inut.

The sequence of instantaneous desciptions of the LALR parser is shown below, where the stack is
shown in the first column, bottom of the stack to the left, top to the right. The remaining output
is shown in the second column, and the current output string in the third. The fourth column
shows the action taken at that step.

$0 a ∗ a+ a$

$0a6 ∗a+ a$ s6

$0E1 ∗a+ a$ 3 r3

$0E1∗4 a+ a$ 3 s4

$0E1 ∗4 a6 +a$ 3 s6

$0E1 ∗4 E5 +a$ 33 r3

$0E1 +a$ 332 r2

$0E1+2 a$ 332 s2

$0E1 +2 a6 $ 332 s6

$0E1 +2 E3 $ 3323 r3

$0E1 $ 33231 r1

halt

1Just the production labels.

2

For our second example, let the input string be w = a+ a ∗ a ∗ a+ a. The output is 333232131,
the reverse rightmost derivation of the input. The id sequence:

$0 a+ a ∗ a ∗ a+ a$

$0a6 +a ∗ a ∗ a+ a$ s6

$0E1 +a ∗ a ∗ a+ a$ 3 r3

$0E1+2 a ∗ a ∗ a+ a$ 3 s2

$0E1 +2 a6 ∗a ∗ a+ a$ 3 s6

$0E1 +2 E3 ∗a ∗ a+ a$ 33 r3

$0E1 +2 E3∗4 a ∗ a+ a$ 33 s4

$0E1 +2 E3 ∗4 a6 ∗a+ a$ 33 s6

$0E1 +2 E3 ∗4 E5 ∗a+ a$ 333 r3

$0E1 +2 E3 ∗a+ a$ 3332 r2

$0E1 +2 E3∗4 a+ a$ 3332 s4

$0E1 +2 E3 ∗4 a6 +a$ 3332 s6

$0E1 +2 E3 ∗4 E5 +a$ 33323 r3

$0E1 +2 E3 +a$ 333232 r2

$0E1 +a$ 3332321 r1

$0E1+2 a$ 3332321 s2

$0E1 +2 a6 $ 3332321 s6

$0E1 +2 E3 $ 33323213 r3

$0E1 $ 333232131 r1

halt

1. Sketch the parse tree.

2. The grammar is ambigous, but the parser resolves all ambiguities, computing only one deriva-
tion for each string in the language. In any derivation produced by the parser, addition and
multiplication are both left associative. Left associativity of addition is guaranteed by the entry
r1 in row 3, in the column headed by the plus sign. Which entry of the action table guarantees
that multiplication is left associative?

3. Which two entries in the action table cause multiplication to have precedence over addition?

4. Write the computation of the parser if the input is a + a + a ∗ a. Use the same array format
used for our two examples above.

3

An Unambiguous Grammar

G is ambiguous. If an expression contains more than one operator, there are multiple parse
trees. Ambiguity is resolved by accoiativity and precedence of operators, and parentheses can
be introduced to override precedence. The LALR parser can be defined, as above, to enforce
associativeity and precedence, but these ambiguities can also be resolved by using an unambiguous
grammar. The grammar G2 below generates the same language as G,but is unambigous. The
three variables of G2 are E (expression), T (term) and F (factor).

1. E → E +2 T3

2. E → T4

3. T → T ∗5 F6

4. T → F7

5. F → a8

G2 enforces precedence of multiplication over addition and left-associativity of both operators.
For example, we now have G2 rightmost derivations of a+ a+ a, a ∗ a ∗ a, and a+ a ∗ a:

E
1
⇒ E+T

4
⇒ E+F

5
⇒ E+a

2
⇒ E+T+a

4
⇒ E+F+a

2
⇒ E+a+a

4
⇒ T+a+a

1
⇒ F+a+a

5
⇒ a+a+a

E
2
⇒ T

3
⇒ T ∗ F

5
⇒ T ∗ a

3
⇒ T ∗ F ∗ a

5
⇒ T ∗ a ∗ a

4
⇒ F ∗ a ∗ a

5
⇒ a ∗ a ∗ a

E
1
⇒ E+T

3
⇒ E+T ∗F

3
⇒ E+T ∗a

3
⇒ E+F ∗a

3
⇒ E+a∗a

3
⇒ T +a∗a

3
⇒ F +a∗a

3
⇒ a+a∗a

5. Write the G2 rightmost derivation of a+ a ∗ a.

6. Fill in the ACTION and GOTO tables for an LALR parser for G2.

ACTION GOTO

action goto

a + ∗ $ E T F

0 s8 1 4 7

1 halt

2 s8 3 7

3 r1 s5 r1

4 r2 s5 r2

5 s8 6

6 r3 r3 r3

7 r4 r4 r4

8 r5 r5 r5

4

Dangling Else

When there is a “else” after two ”if”s, which ”if” does the ”else” pair with? Here is CF grammar,
G3, which isolates this problem. The start symbol S is the only variable. The symbol i represents
“if(condition)”, e represents “else,” w represents “while,” and a represents any other statement,
such as an assignment statement.

I have annotated the grammar with stack states. When you take the compiler class, you will learn
an algorithm for computing these stack states.

1. S → i2S3

2. S → i2S3e4S5

3. S → w6S7

4. S → a8

7. Fill in the ACTION and GOTO tables for an LALR parser for G3.

ACTION GOTO

a i e w $ E

0

1 halt

2

3

4

5

6

7

8

8. Walk through the actions of the LALR parser for the input string iiwaea.

$0 iiwaea$

The output is the reverse rightmost derivation 43421.

5

