
Reductions-2

Theorem 3 (Cook-Levine) SAT is NP–complete.

SAT is the first problem provedNP–complete. Additional problems have been provedNP–
complete by reduction from SAT, or other problems already known to be NP–complete,
using Theorem 4 below.

Theorem 4 If L1 is NP–complete and L2 is NP, and there is a polynomial reduction of

L1 to L2 , then L2 is NP–complete.

Proof: Condition 1 of the definition of NP–completeness is given. To prove Condition 2,
let L3 ∈ NP. We need to show that there is a polynomial time reduction R of L3 to L2.
Since L1 is NP–complete, there is a polynomial time reduction of L3 to L1, and we are
given a polynomial time reduction of L1 to L2. Let R be the composition of those two
reductions. ✷

Theorem 3 is the Cook-Levine theorem. The proof is available in various sources, including
the internet.

For any k ≥ 2, we define k-SAT to be the satisfiability problem for Boolean expressions in
K-CNF form, meaning in CNF form where each clause has k terms.1

Theorem 5 For any k ≥ 3, k-SAT is NP–complete.

Proof: We give a polynomial time reduction of SAT to k-SAT.

This proof is not finished.

The result follows from Theorems 3 and 4. ✷

We remark that 2-SAT is polynomial.

Let IND be the independent set problem: given a graph G and an integer k, does G have
an independent set of order k? A set of vertices I of G is independent if no two members
of I are neighbors.

Theorem 6 IND is NP–complete.

Proof: We give a polynomial time reduction R of 3-SAT to IND.

Let e be a Boolean expression in 3-CNF form, the conjunction of k clauses, each with
three terms. Then e = C1 ∗ C2 ∗ · · · ∗ Ck where each clause Ci = ti,1 + ti,2 + ti,3 and
each ti,j is either a variable or the negation of a variable. Let R(e) = G, where G =

1We allow a clause to have fewer than k terms, since we can pad the clause with duplicate terms. For

example, we could replace the clause x+!y by the equivalent x+ x+!y.
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(V,E), a graph of 3k vertices {v[i, j] : 1 ≤ i ≤ k, j = 1, 2, 3}, and E is the set of pairs
{ {

v[ti,j ], v[ti′,j′ ]
}

: i = i′ or ti,j ∗ ti′,j′ is a contradiction.
}

. We call an edge { {ti,j , ti, j′}}
em short, and the other edges long.

We now show that R is a reduction of 3-SAT to IND. Suppose IND has a set I of k

independent vertices. We define an assignment for each variable in e as follows. For
v[i, j] ∈ I, either ti,j is either x or !x for some variable x. If it is x, we assign x true,
otherwise false. If any variable of e is not yet assigned, assign it arbitrarily to true.

A variable x cannot be assigned both true and false. If t[i, j] = x and t[i′, j′] =!x, then
there is a long edge between v[i, j] and v[i′, j′], and hence those two vertices cannot both
be members of I.

Since no two of members of I can be connected by a short edge, I contains exactly one
vertex v[i, j] for each i, hence one term of Ci is true. Thus, each clause is true, hence e is
true.

Conversely, assume that e has a satisfying assignment. For each clause Ci, choose one term

ti,ji which is true under the assignment. Then I =
{

v[i, ji]
}

is an independent set of G,

since no two of those terms contradict, and hence there is no long edge connecting them
and, Since there is one vertex of each i in I, no two are connected by a short edge.

The result follows from Theorems 5 and 4. ✷

The subset sum problem, which we abreviate a SSP is whether, given a set of weights, there
is a subset whose total weight is equal to a given constant. More formally, an instance of
SSP is a pair (σ,K) where K is a constant and σ = x1, x2, . . . xn, a sequence of numbers.
We will use the variant of SSP where all numbers are positive. The problem is, does σ have
a subsequence whose total is K?

Theorem 7 SSP is NP–complete.

Proof: We give a polynomial time reduction R of IND to SSP.

This proof is not finished.

The result follows from Theorems 6 and 4. ✷

An instance of Partition is a pair (σ,K) where σ is a sequence of numbers and K is a
number. A solution to that instance is a subsequence of σ whose total is half the total of
σ. We use the variant of Partition where the numbers are positive.

Theorem 8 Partition is NP–complete.

Proof: We give a polynomial time reduction R of SSP to Partition. Let (σ,K) be an
instance of SSP. Let σ = x1, x2, . . . , xn. Let S =

∑n
i=1 xi. Without loss of generality,

K ≤ S, since otherwise there can be no solution.

We define R(σ,K) to be a sequence τ obtained by appending two more terms to σ: τ =
x1, x2, . . . , xn, xn+1, xn+2, where xn+1 = K + 1 and xn+2 = S − K + 1. The sum of the

2



terms of τ is 2S+2, and thus a solution is a subsequence of τ whose total is S+1. If there
is a subsequence σ′ of σ whose total is K, the subsequence of τ obtained by appending
xn+2 to σ′ has total S + 1.

Conversely, suppose τ has a subsequence τ ′ of total S+1. τ ′ cannot contain both xn+1 and
xn+2, since their total is greater than S + 1. Similarly, τ ′ must contain at least of those
terms, since otherwise any subsequence would have total less than S + 1.

If τ ′ contains xn+2, the remaining terms of τ ′ are a subsequence of σ whose total is K.
Otherwise, the subsequence consisting of those terms of τ not in τ ′ also has total S + 1,
and those terms of that subsequence, after xn+2 is deleted, total K.

The result follows from Theorems 7 and 4. ✷
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