Reductions-2

Theorem 3 (Cook-Levine) SAT is $\mathcal{N P}$-complete.

SAT is the first problem proved $\mathcal{N} \mathcal{P}$-complete. Additional problems have been proved $\mathcal{N} \mathcal{P}-$ complete by reduction from SAT, or other problems already known to be $\mathcal{N} \mathcal{P}$-complete, using Theorem 4 below.

Theorem 4 If L_{1} is $N P$-complete and L_{2} is $\mathcal{N P}$, and there is a polynomial reduction of L_{1} to L_{2}, then L_{2} is $\mathcal{N P}$-complete.

Proof: Condition 1 of the definition of $\mathcal{N} \mathcal{P}$-completeness is given. To prove Condition 2, let $L_{3} \in \mathcal{N} \mathcal{P}$. We need to show that there is a polynomial time reduction R of L_{3} to L_{2}. Since L_{1} is $\mathcal{N} \mathcal{P}$-complete, there is a polynomial time reduction of L_{3} to L_{1}, and we are given a polynomial time reduction of L_{1} to L_{2}. Let R be the composition of those two reductions.

Theorem 3 is the Cook-Levine theorem. The proof is available in various sources, including the internet.

For any $k \geq 2$, we define k-SAT to be the satisfiability problem for Boolean expressions in K-CNF form, meaning in CNF form where each clause has k terms. ${ }^{1}$

Theorem 5 For any $k \geq 3, k$-SAT is $\mathcal{N} \mathcal{P}$-complete.
Proof: We give a polynomial time reduction of SAT to k-SAT.

This proof is not finished.

The result follows from Theorems 3 and 4.
We remark that 2-SAT is polynomial.
Let IND be the independent set problem: given a graph G and an integer k, does G have an independent set of order k ? A set of vertices I of G is independent if no two members of I are neighbors.

Theorem 6 IND is $\mathcal{N} \mathcal{P}$-complete.

Proof: We give a polynomial time reduction R of 3-SAT to IND.
Let e be a Boolean expression in 3-CNF form, the conjunction of k clauses, each with three terms. Then $e=C_{1} * C_{2} * \cdots * C_{k}$ where each clause $C_{i}=t_{i, 1}+t_{i, 2}+t_{i, 3}$ and each $t_{i, j}$ is either a variable or the negation of a variable. Let $R(e)=G$, where $G=$

[^0](V, E), a graph of $3 k$ vertices $\{v[i, j]: 1 \leq i \leq k, j=1,2,3\}$, and E is the set of pairs $\left\{\left\{v\left[t_{i, j}\right], v\left[t_{i^{\prime}, j^{\prime}}\right]\right\}: i=i^{\prime}\right.$ or $t_{i, j} * t_{i^{\prime}, j^{\prime}}$ is a contradiction. $\}$. We call an edge $\left\{\left\{t_{i, j}, t_{i}, j^{\prime}\right\}\right\}$ em short, and the other edges long.

We now show that R is a reduction of 3 -SAT to IND. Suppose IND has a set I of k independent vertices. We define an assignment for each variable in e as follows. For $v[i, j] \in I$, either $t_{i, j}$ is either x or ! x for some variable x. If it is x, we assign x true, otherwise false. If any variable of e is not yet assigned, assign it arbitrarily to true.

A variable x cannot be assigned both true and false. If $t[i, j]=x$ and $t\left[i^{\prime}, j^{\prime}\right]=!x$, then there is a long edge between $v[i, j]$ and $v\left[i^{\prime}, j^{\prime}\right]$, and hence those two vertices cannot both be members of I.

Since no two of members of I can be connected by a short edge, I contains exactly one vertex $v[i, j]$ for each i, hence one term of C_{i} is true. Thus, each clause is true, hence e is true.

Conversely, assume that e has a satisfying assignment. For each clause C_{i}, choose one term $t_{i, j_{i}}$ which is true under the assignment. Then $\left.I=\left\{v_{[} i, j_{i}\right]\right\}$ is an independent set of G, since no two of those terms contradict, and hence there is no long edge connecting them and, Since there is one vertex of each i in I, no two are connected by a short edge.

The result follows from Theorems 5 and 4.
The subset sum problem, which we abreviate a SSP is whether, given a set of weights, there is a subset whose total weight is equal to a given constant. More formally, an instance of SSP is a pair (σ, K) where K is a constant and $\sigma=x_{1}, x_{2}, \ldots x_{n}$, a sequence of numbers. We will use the variant of SSP where all numbers are positive. The problem is, does σ have a subsequence whose total is K ?

Theorem 7 SSP is $\mathcal{N} \mathcal{P}$-complete.
Proof: We give a polynomial time reduction R of IND to SSP.

This proof is not finished.

The result follows from Theorems 6 and 4.
An instance of Partition is a pair (σ, K) where σ is a sequence of numbers and K is a number. A solution to that instance is a subsequence of σ whose total is half the total of σ. We use the variant of Partition where the numbers are positive.

Theorem 8 Partition is $\mathcal{N} \mathcal{P}$-complete.
Proof: We give a polynomial time reduction R of SSP to Partition. Let (σ, K) be an instance of SSP. Let $\sigma=x_{1}, x_{2}, \ldots, x_{n}$. Let $S=\sum_{i=1}^{n} x_{i}$. Without loss of generality, $K \leq S$, since otherwise there can be no solution.
We define $R(\sigma, K)$ to be a sequence τ obtained by appending two more terms to $\sigma: \tau=$ $x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}, x_{n+2}$, where $x_{n+1}=K+1$ and $x_{n+2}=S-K+1$. The sum of the
terms of τ is $2 S+2$, and thus a solution is a subsequence of τ whose total is $S+1$. If there is a subsequence σ^{\prime} of σ whose total is K, the subsequence of τ obtained by appending x_{n+2} to σ^{\prime} has total $S+1$.
Conversely, suppose τ has a subsequence τ^{\prime} of total $S+1 . \tau^{\prime}$ cannot contain both x_{n+1} and x_{n+2}, since their total is greater than $S+1$. Similarly, τ^{\prime} must contain at least of those terms, since otherwise any subsequence would have total less than $S+1$.

If τ^{\prime} contains x_{n+2}, the remaining terms of τ^{\prime} are a subsequence of σ whose total is K. Otherwise, the subsequence consisting of those terms of τ not in τ^{\prime} also has total $S+1$, and those terms of that subsequence, after x_{n+2} is deleted, total K.
The result follows from Theorems 7 and 4.

[^0]: ${ }^{1}$ We allow a clause to have fewer than k terms, since we can pad the clause with duplicate terms. For example, we could replace the clause $x+!y$ by the equivalent $x+x+!y$.

