Reductions-2
Theorem 3 (Cook-Levine) SAT is N'P-complete.

SAT is the first problem proved N’P—complete. Additional problems have been proved N'P—
complete by reduction from SAT, or other problems already known to be NP—complete,
using Theorem 4 below.

Theorem 4 If Ly is NP-complete and Lo is N'P, and there is a polynomial reduction of
Ly to Ly , then Ly is N'P—complete.

Proof: Condition 1 of the definition of NP—completeness is given. To prove Condition 2,
let Ly € NP. We need to show that there is a polynomial time reduction R of L3 to L.
Since L; is N’P—complete, there is a polynomial time reduction of Ls to Li, and we are
given a polynomial time reduction of Ly to Lo. Let R be the composition of those two
reductions. O

Theorem 3 is the Cook-Levine theorem. The proof is available in various sources, including
the internet.

For any k > 2, we define k-SAT to be the satisfiability problem for Boolean expressions in
K-CNF form, meaning in CNF form where each clause has k terms.!

Theorem 5 For any k > 3, k-SAT is N'P—complete.

Proof: We give a polynomial time reduction of SAT to k-SAT.
This proof is not finished.

The result follows from Theorems 3 and 4. O

We remark that 2-SAT is polynomial.

Let IND be the independent set problem: given a graph G and an integer k, does G have
an independent set of order k7 A set of vertices I of G is independent if no two members
of I are neighbors.

Theorem 6 IND is N'P—complete.

Proof: We give a polynomial time reduction R of 3-SAT to IND.

Let e be a Boolean expression in 3-CNF form, the conjunction of k£ clauses, each with
three terms. Then e = Cp * Cy * --- * Cp, where each clause C; = t;1 + t;2 + t;3 and
each t;; is either a variable or the negation of a variable. Let R(e) = G, where G =

'We allow a clause to have fewer than k terms, since we can pad the clause with duplicate terms. For
example, we could replace the clause x+!y by the equivalent x + z+!y.



(V,E), a graph of 3k vertices {v[i,j] : 1 <i <k, j=1,2,3}, and E is the set of pairs
{{vlti;],v[tir 1]} : i =14 or t;; =ty ;s is a contradiction.}. We call an edge {{t;;,ti,j'}}
em short, and the other edges long.

We now show that R is a reduction of 3-SAT to IND. Suppose IND has a set I of k
independent vertices. We define an assignment for each variable in e as follows. For
v[i, j] € I, either ¢;; is either x or !z for some variable x. If it is x, we assign = true,
otherwise false. If any variable of e is not yet assigned, assign it arbitrarily to true.

A variable x cannot be assigned both true and false. If t[i,j] = x and t[¢/,j'] =!x, then
there is a long edge between v[i, j] and v[¢’, j'], and hence those two vertices cannot both
be members of I.

Since no two of members of I can be connected by a short edge, I contains exactly one
vertex v[i, j] for each i, hence one term of Cj is true. Thus, each clause is true, hence e is
true.

Conversely, assume that e has a satisfying assignment. For each clause C;, choose one term
t;,j; which is true under the assignment. Then I = {v[z’, ]Z]} is an independent set of G,
since no two of those terms contradict, and hence there is no long edge connecting them
and, Since there is one vertex of each 4 in I, no two are connected by a short edge.

The result follows from Theorems 5 and 4. O

The subset sum problem, which we abreviate a SSP is whether, given a set of weights, there
is a subset whose total weight is equal to a given constant. More formally, an instance of
SSP is a pair (0, K) where K is a constant and o = x1,x9, ... Z,, a sequence of numbers.
We will use the variant of SSP where all numbers are positive. The problem is, does ¢ have
a subsequence whose total is K7

Theorem 7 SSP is N'P—complete.

Proof: We give a polynomial time reduction R of IND to SSP.
This proof is not finished.

The result follows from Theorems 6 and 4. O

An instance of Partition is a pair (o, K) where o is a sequence of numbers and K is a
number. A solution to that instance is a subsequence of o whose total is half the total of
0. We use the variant of Partition where the numbers are positive.

Theorem 8 Partition is N'P—complete.

Proof: We give a polynomial time reduction R of SSP to Partition. Let (o, K) be an
instance of SSP. Let ¢ = z1,22,...,2,. Let S = Y1 ;. Without loss of generality,
K < S, since otherwise there can be no solution.

We define R(o, K) to be a sequence T obtained by appending two more terms to o: 7 =
T1,22, -y Ty Tnt1, Tnto, Where xp11 = K+ 1 and zpy0 = 5 — K + 1. The sum of the



terms of 7 is 25 + 2, and thus a solution is a subsequence of 7 whose total is S + 1. If there
is a subsequence o’ of ¢ whose total is K, the subsequence of 7 obtained by appending
Znio to o’ has total S + 1.

Conversely, suppose 7 has a subsequence 7’ of total S+ 1. 7’ cannot contain both x,; and
Tnio, since their total is greater than S + 1. Similarly, 7/ must contain at least of those
terms, since otherwise any subsequence would have total less than S + 1.

If 7/ contains x,y9, the remaining terms of 7/ are a subsequence of o whose total is K.
Otherwise, the subsequence consisting of those terms of 7 not in 7’ also has total S + 1,
and those terms of that subsequence, after x,9 is deleted, total K.

The result follows from Theorems 7 and 4. O



